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ABSTRACT

Propagation of electromagnetic waves through a homogeneous aniso-

tropic column of a medium of infinite length is considered. The anisotropy of

the medium is characterized by the dyadic form of the permittivity 4 and per-

meability . . This anisotropic column is surrounded by a coaxial homogeneous

Isotropic medium characterized by scalars 4 1 andP2 , this complete structure

being enclosed by a perfectly conducting metallic circular cylindrical wave-

guide. A magnetic current ring source is inserted symmetrically in the iso-

tropic medium. Throughout the analysis the strength of the source is con-

sidered to be an arbitrary function of the polar angle 0. For this general

problem the complete expressions for fields (due to the source), power flow,

and the dispersion relation have been studied.

To solve a source problem, dyadic Green's functions for both point

electric current source and point magnetic current source have been con-

structed in a formal way from the source free solutions of the appropriate

Maxwell's equations. These dyadic Green's functions can be used for any

arbitrary source.

From the general expressions for the transverse fields in terms of the

longitudinal fields, In any arbitrary cylindrical region (unbounded) the propaga

tion wave number of a TEM mode travelling in the longitudinal direction z has

_ _ V
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been obtained. The wave numbers for a TEM wave propagating In a direction

perpendicular to z, can be obtained from the general expressions for the trans-

verse wave numbers, using

az = J=0az

The results of the above general problem have been used to study the

wave propagation In an anisotropic plasma column and an anisotroplc ferrite

column separately. The various possible passbands for the propagation of

electromagnetic waves in an ansotroplc plasma column have been obtained and

a special case is considered for numerical computation of the longitudinal

electric field in a plasma. The analysis for the plasma problem emphasizes the

slow wave propagation.

vi
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I

INTRODUCTION

Electromagnetic wave propagation through an ansotropic medium has

been studied by many authors in different situations - from ionosphere to con-

ventional waveguides. Ionospheric anisotropy is due to the presence of the

earth's static magnetic field. Ionized, but macroscopically neutral gases of any

kind are known as plasmas. An ionized and neutral stationary plasma In a weak

electromagnetic field can be represented as an equivalent dielectric medium.

Moreover, when this plasma is situated In a uniform static magnetic field, the

strength of which is not necessarily small, its equivalent dielectric "constant"

behaves as a dyadic (tensor). It is well known that radio wave propagation

through the ionosphere depends on the frequency of the electromagnetic wave,

electron density, the collision frequency, the ion gyrofrequency and the electron

gyrofrequency. The same is true for a wave propagating through a plasma

waveguide. This knowledge of the wave propagation is essential for satisfactory

long-distance radio communication through the ionosphere.

The study of a plasma Is also of vital importance In the field of thermo-

nuclear reactions. In a thermonuclear reactor a static magnetic field is used

to confne and to heat a plasma. Many times It is desirable to obtain Information

on the temperature, density, etc. of the plasma. Such investigations which
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determine the characteristics and behavior of the plasma are known as "plasma

diagnostics."

Besides the above, the propagation of electromagnetic waves In plasma-

filled or partially plasma-filled waveguides has aroused considerable interest

In recent years [6] [7] [8] , primarily because of possible applications to

the generation or amplification of microwaves. A medium whose dielectric

"constant" is a tensor is called gyroelectric.

On the other hand, there is another class of materials known as ferrites

which exhibit ferro-magnetic properties. The chemical composition of the

ferrites may be expressed [31 [18] by the formula MO Fe, 03, where M

represents a metal, such as Mn, Fe, Ni, Cu, Mg, Al, Co, etc. Although

ordinary iron (Fe) and nickel (NI) possess ferromagnetic properties, they are

of little use as microwave components due to their high losses. But the ferrite

materials mentioned above, whose specific resistances are above 106 times

higher than those of the n'etals, with relative permeabilities ranging up to

several thousands and rel. .%re dielectric constants varying from 5 to 25, have

extensive use in microwave devices. In the presence of a static magnetic field

the permeability j of a ferrite becomes anisotropic, I. e., /A becomes a dyadic,

which is the characteristic of a gyromagnetic medium. The medium whose

dielectric constant and permeability both are tensors, is known as gyrotropic.

2
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In connection with the Faraday rotation of guided electromagnetic waves

In a gyromagnetic medium with a uniform static magnetic field In a circular

cylindrical waveguide (the axis of the waveguide coincides with the gyro-axis

which is also the direction of the static magnetic field and has been taken as the

z-axls), Suhl and Walker [2] have shown that only circularly polarized modes

exist, if Ez J 0, and Hz J 0, and pure TE and TM modes do not exist.

However, pure TE and TM modes can exist If - t = 0. It should be noted
bz

that in this case as well as throughout the present work, the anisotropic medium

under consideration is homogeneous. For an anisotropic plasma medium TE

and TM modes can exist [ 7] independently in another special case when the

axial-static magnetic field is infinite. Besides the above mentioned work, a

number of investigators including Van Trier [ I] , Gamo [19], Fainberg and

Gorbatenko [4], Agdur [6] , Epstein (3] , Trivelpiece [8] etc. have

carried out research in connection with wave propagation n gyroelectric, gyro-

magnetic, or gyrotropic media with various configurations. All of the research

work cited above except that in [7] considered only the source free resonance

behavior of electromagnetic waves. In the present problem, however, a source

of electromagnetic waves which interact with the ansotropic medium is included.

In Appendix A, a general formulation of the source-free problem is presented

for any cylindrical geometry with arbitrary cross section. This formulation is

3
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suitable even for an unbounded anLsotropic medium, provided cylindrical sym-

metry is assumed. In Appendix B, dyadic Green's functions for a point source

(electric current or magnetic current or both) are constructed from the general

source free solutions of the Maxwell's equations for both dissipative and non-

dissipative media. For such a construction of Dyadic Green's functions refer-

ences [9], [11] , and [1z] have been found very useful. An alternative

method using a transmission line formulation can be devised for the construction

of Dyadic Green's functions.

In chapter I the problem considered is to find the dispersion relations and

the complete fields due to an excitation by a magnetic current ring source situated

in a cylindrical isotropic homogeneous medium characterized by a relative di-

electric constant f 2 and a relative permeability p2 , which encloses a central

cylindrical column of a homogeneous anisotropic medium characterized by

dyadics f and;A, this whole structure being enclosed by a perfectly conduct-

Ing cylindrical wavegulde. This general analysis has avoided specifying any

particular medium, say a plasma or a ferrite, and also It does not necessarily

consider a ring source of constant strength. A ring source (magnetic current)

represents an idealization of a possible excitation, for example, a circumferen-

tial slot In the wavegulde wall, or an annular slot on a thin metallic disc* fitting

* In this example one must also consider the boundary condition for the conducting
metallic disc.

4
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tightly across the waveguide. Although a ring source is taken for analysis, any

other type of source can also be handled adequately since the formal expressions

for dyadic Green's functions for an electric current source and a point magnetic

current source are given in Appendix B. A magnetic current ring source is more

appropriate for a plasma problem, whereas for a ferrite problem an electric

dipole at the center of a cross section of a circular waveguide is more appro-

priate.

In Appendix C, the general dispersion relation of Chapter I has been

evaluated in a number of Interesting special situations with appropriate limiting

processes. Although in these special cases the procedures are also applicable

to obtain expressions for the total fields due to the source from the general ex-

pressions given in Chapter I, no attempt has been made to obtain these expres -

sions owing to the laborious task they involve.

Chapter II deals with a problem in which the anisotropic column is taken

to be a plasma In an axial static magnetic field, using the results of Chapter I.

In this case necessary conditions for slow wave propagation (which give maxi-

mum passbands) have been obtained. The sufficient condition and hence the

actual passbands can be obtained from the solution of the dispersion relation.

Since it is not possible to study a dispersion relation in general, a few special

cases have been discussed. In addition to these a more general dispersion rela-

5__
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tion for slow wave propagation has been cons idered for numerical computation

in Appendix D. In this case the lowest eigenvalues are found and the corres-

ponding longitudinal electric field is calculated.

In Chapter I, the results of Chapter I have been applied to study wave

propagation through a ferrite column with a uniform axial static magnetic field.

It may be noted here that results for a ferrite problem can be obtained by using

duality on the corresponding results for a plasma problem when the boundary

conditions on H in the ferrite are the same as those on E in the plasma, for

example an unbounded plasma and a ferrite.

From the formal expressions of the transverse electric and magnetic

fields as functions of the longitudinal fields Ez and Hz , and using the expres-

sions for the transverse propagation wave numbers obtained in Appendix A,

conditions for TEM wave propagation n the direction parallel to or perpendi-

cular to the d. c. magnetic field have been obtained. These conditions provide

expressions for the propagation wave numbers in the respective cases. The

conditions which give the possibility of a TEM wave propagation in an unbounded

medium cannot be valid in a bounded medium or in waveguides (except those

bounded by two non-connecting metallic boundaries). Therefore these discus-

sions suggest that the study of a dispersion relation for a bounded anisotroplc

medium, under the condition of TEM wave propagation, Is meaningless and

_________________________________ 6 ____________________
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inconsistent. It can be shown that the condition of TEM wave propagation in

the direction of the static magnetic fild, is equivalent to zero-value of the

product of the two transverse wave numbers. However, results for such a

situation have been presented in the literature mistakenly. * A reason for such

inconsistent results may be that the authors overlooked the direct equivalent

relations between the conditions of TEM waves travelling in the direction of

the static magnetic field and the vanishing conditions of the product of the trans-

verse wave numbers.

Agd. 1-6] pages 183 to 185, also [1 page 497.

t 1_7 7 _
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I

GENERAL PROBLEM

Statement of the Problem

An infinitely long column of an anisotropic medium characterized by

tensors 6. and $A, of radius a, is situated coaxially inside a perfectly con-

ducting circular cylindrical wavegulde of radius b. The annular space between

the column of the anisotropic medium and the cylindrical waveguide is filled

with an Isotropic medium characterized by scalars 62 and p2. The electro-

magnetic fields are introduced into this system by a magnetic current ring

source of radius c, the center of which lies on the axis of the waveguide, such

that a < c 4 b. The total fields and their behaviors are studied. Figure 1 shows

the geometry of the problem.

General Formulation of the Problem

For convenience the plane of the ring source will be chosen as z = 0,

where the axis of the cylinder lies along the z-axis. Due to the cylindrical

symmetry of the structure, cylindrical coordinates r, 0, and z will be used

here. If the ring source is very thin both in the radial and in the axial direction,

it can be represented in the following way

I- -m eJ6t =0 m(O) 9(r-c)(z)edot (1)

8
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where w = exciting angular frequency

0 = unit vector In the 0-direction

m(e) = strength of the source In volts

(r - c) and W(z) are well known Dirac-delta functions.

Magnetic Ring Current

Region 2
An isotropic medium

Metallic waveguide

Region 1 - An anisotropic medium

FIGURE I

Although ultimately m(O) will be chosen as a constant for numerical

computational facility, the present formulation of the problem Is valid for m(O),

any arbitrary function of Its argument 0.

The Maxwell's equations for this problem can be expressed (the time

dependence Is assumed to be eJj t ) as

9
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V7 x E (r) -J= A r H(r) - _0 I

'TxH(r) = jt 6(r) E(r)

0

where the relative dielectric constant 1(r) and the relative permeability /4(r)

are defined in the following way.

46rr re 0

(r) = -JOr 6 0 , for 0 r 4a (3a)

0 0 f'zz

with constant elements

S 62 (constant) , for a6 r, b (3b)

Crr =  00
(3)

Cr0 = Or I
JA r r  Jur°  0

IA (r) -) or /400 0 , for 04 r6 a (4a)

0 0 ;zz

with constant elements

___10
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= Pj2 (constant), for a4 r 4 b (4b)

Arr = 1
(4c)

ArO = 0r

r in eqs. (2) represents a three dimensional position vector, and r is the

radial coordinate. The results developed in Appendices A and B will be fre-

quently used In the following.

A method of solving any source problem in terms of Green's function

will be presented here. To construct a Green's function for a problem with

some given boundary conditions, it is sufficient to find corresponding elgen-

functions which form a complete orthogonal set. These elgenfunctions are solu-

tions of the source-free problem subject to the same boundary conditions.

In the present problem where the waveguide is uniform (independent of z)

and the medium Is also homogeneous In the axial direction z (I.e., components

of F and j are not functions of the coordinate z, with 4 and , having forms

shown in (3) and (4) respectively), one can assume that there will be waves

propagating in the z-direction, having z-dependence as e -jCz , where X is a

propagation wave number for a particular mode. This assumption leads Max-

well's equations with appropriate boundary conditions, to an eigenvalue problem

with) Xas an elgenvalue (see Appendix B and [9] to [13] ).

11
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Thus the source-free solutions (r) and X (r) satisfying the following

Maxwell's equations (5), form a complete orthogonal set of eigenfunctions.

7 x 6(r) = -jupopr) * , (r)St - (5)+

Vx )(/r)= jwfo. 6(r) (r)

The orthogonality relation can be obtained by choosing another set
D"

(r) and 1'(r), which satisfy the same boundary conditions and the fol-

lowing Maxwell's equations,

X 'r)= J~i.o 0+(r) " '.(r) (6)+Ell A+r(r

7x) =-Jio + * (r) 
W3

where * denotes complex conjugate,

f+ (or u+) = adjoint of 4 (or IA) = complex conjugate of the transpose

of £ (org).

Now it can be shown (see the above mentioned references) that the

required orthogonality relation Is

5 t 5 (r) • 11le(r) x Ao ds = zl (r) - xt(r) s (7)

+In general the single Index £ (orn) is actually a double index In (or i'n')

corresponding to radial and angular variations.

____ ____ ____ ____ ____ ____ ____ 12 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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where - and .1' correspond to -th and -th modes (elgenvalues)

respectively.

Eo = unit vector in z-direction

N, = normalization constant

6, '--1, forX -

-0, for~tj 7 ~ 1

- and t are transverse components and respectively. s Is

the cross section of the wavegulde.

Since In the present problem the only source is a magnetic current, the

total fields can be expressed in the following way, using the appropriate dyadic

Green's functions (eqs. (16b) and (17a) in Appendix B):

2,r b c

E (r) Im 3Wi~X) rd d, ~ (8)

and
2w b c

E(r) ffi - ,E(r) 2OIm (r r'dz'dr' d' (9)
2N1

0 0-

r = observation position vector

r' = source position vector (i. e., primed coordinates refer to source)

and the time dependence eJ' t Is suppressed everywhere.

13
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Using eq. (1), the above two expressions can be reduced to the following

forms

2W

E(r) = -C c 2 (c, 0', 0) m (0') dO (10)

0
and

27r

H(r) = -(c, 0' 0)m(0')dO' (11)

0

where ) t (c, 0', 0) Is the 0-component of (c, 0, 0). if w

and __ (r) can be expressed as (the single index .2 Is replaced by the double

Index In):

in(r) = A, LnIn (r)

-n () = A1 In gin (1) (12)

Xi~ = Afj g ()

g';.(r> In -

and moreover If

9!in () ='n(r, z) e -inO I = 1, 2, 3,. (13)
n 0, ±1, t .

then the above expressions (10) and (11) can be reduced further to the following

14
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in A )A"
Er) c Z: 1A, In -  gn (r) g" () m (14)

i, Ni K) - in (15

where
Zir

In = 5 e-Jn0 m(8') dO' , (16a)

0

A and A"l are constants and fin (r) , and g' n (r) are known functions.

If m(') = m, a constant, then n= 0 1[i.e., .0 and consequently

In  = 21m (16b)

For n = 0, the above summation is no more than a single summation over 1.

Now using (12) and the orthogonality relation

tnr) • n (r) x 30 ds = Nin (17)

It can be shown easily that

A HnA"II 1
Al[nlin 1 _ _ _ _ _ _ _

N f  fin(A) ' (L) x ds 'r
srnl)g0inl)-f ln()gr [n(r rdrdO

0 (18)

__15
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Now using the above relation (18) In the expressions (14) and (15), It can be

shown that the complete fields have the following forms

E(r) = - -In () gn (c)

f frg I W - f01 n(K)gr 1 (L)] rdrde (19)

q Hn)n () gin

1,n f (r)g t(r) - f (r)g" 1(r] rdrd (20)
ir~n OLD O1n r~n'J(0

Although the above two expressions (19) and (20) are valid for both dissipative

and non-dissipatIve media, the relation between gtn and g" becomes simple In

the case of non-dissipative medium. Thus In a non-dissIpative medium (see

Appendix B and [9]) It can be shown that

96 = I = complex conjugate of gin

(21)
f* = complex conjugate of

Therefore, for non-dssipative medium, the total electromagnetic fields are

given by the following expressions (using (21)):

.... 16
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EcrnW Inn in (c)
2 -rn(r)gn(r_)- f8n(r)grnJ rdrdO (22)

H(r)mn gin W 41, (c)

i, n f1)*W f rdrdO (23)

It may be noted here that for non-dissipative medium the propagation

wave number Xn (eigenvalue) in the z-direction is a real number.

An alternative set of expressions for total electromagnetic fields which

are particularly suitable for dissipative media (although valid for non-dtssipative

media also), can be obtained from (19) and (20) using the following transforma-

tions

it *n Ain

4n I (r- Cr' /Prd) = --f-n (L, A n - reO "#rd = -n ( r )  (24)

Ki (,!in , Ard = gin (L, -)in, -rO, -/'r) "&"in(r)

Thus the total fieldswhlch are particularly suitable for a dissipative

medium, can be expressed In the following way (using (24)):

____ ____ ___ ____ ____ ___ ____ ___ 17 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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L~ in () gIn (c

E 2r : Pr (25)
1 , - fOin(-)ri(r) rdrdO

f0 r in(r)goin(L 'n(r-) 'gri
Hmr n gi (r26)

It should be pointed out here that for a dissipative medium, the propagation

wave number Xin (eigenvalue) In the z-directlon is complex.

Solutions of the Homogeneous (source-free) Maxwell's Equations

It has been demonstrated In Appendix A that for source-free and homo-

geneous (or for piecewise constant M and ) medium the longitudinal (z-com-

ponent) components of electric and magnetic fields obey the following two

equations

v2 1E z a3OIZ (27)*V2 , + t2z aJorz ,  a

t z tr-'r 1 z Cr~r 3 z (28)

* To simplify notation, Indices are omitted from both field quantities and

18
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where a, = k2 4r 2 - w2) x2

a,1  kJA (C2 ) A
r r r

a3  M J rC +WfT

Sr = 00 = Cr

(rO Cor = f'

1rr A 00 ) r

A zz 1 IZ

2 2
k W JA 0 0

The transverse fields (I.e., r and 0 components) can now be expressed

(see Appendix A) in terms of 6 z and Xz In the following manner

1z
. 0 x [k'V (29)

and

j= + (+oa2t 8z]- - X [k2Xa3V wz-  6 z  (30)

19 ,,
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a2  r
a. = k2 At(f 2 -,, ) +X2f,

r

a 4 = k2(wre r +P,€) _A2

P, -- k4a2 - a2
3 42 4

It is observed here that If a3 = 0, the two equations (27) and (28) become

uncoupled. * Although this is a necessary condition that the conventional E-type

and H-type modes separate, it is not sufficient. The sufficient condition depends

on the boundary conditions. For example, if the medium completely fills a

perfectly conducting waveguide, and If a 3 = 0, E-type and H-type modes can

exist separately. But on the other hand, If there are two coaxial media, (the

outer one may or may not be bounded by a perfect conductor) E-type and H-type

modes can exist separately if and only if 0 (with a3 = 0). But If

8 0, and even f a3 = 0, in the above two coaxial media-system E-type
80

and H-type modes cannot exist separately. A similar discussion for isotropic

media where a 3 = 0, can be found in (16]. sec. 11.6.

For the solution of (27) and (28) tz and )z can be eliminated yielding

a single 4th degree equation in each oftz and )t. which satisfy both of the

second degree equations (27) and (28). If a choice is made such that =&z+Jad z ,

* TE and TM modes also decouple, i.e., they can exist separately f there
is a constant line source in the z-direction. In this case = 0.
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then the equations (27) and (28) can be reduced to the following equation (for

detail see Appendix A):

2 0+1 '2z = 0 (31)

where

[a W -we aa] "z ,z [a, 6a (32)

Solving equation (32) for a, one obtains

al 2a (1z1z3 z -z33

2w % Cz a3 A

Therefore, the roots of ,'2 can also be expressed in the following way

= v-l-T112 = V ' U (34)
1 l2

where
j z +a, alz ,2 '2

V= = 1  (35a)2 er Jur 2

and

= Crr3

_Ar _ _ _ _ = "_'12 1 2
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Equation (31) has the following form In polar coordinates

r -di+ I 2 + 1
1 4r 1r " (r) 0 = 0 (36)
r br br r2  de I h~

where

2 2
(r) =11,2 for 04 r4 a (37a)

= 2 = k 2 '2 42. o fora. 4b (37b)

The general solution of (36) in the region containing the origin can be

written as

I, At = J n ( '  JnS. n = 0,1, ± 2
01, 2 = Al:Jn (I, 2 r) e fo 0 4 r . (38)*

for 0 r a

and the solutions of (36) In the region ae. r . b, which correspond to longitudinal

fields, are given by

z [BI' Jn(llr)+C1' Nn()r)]en, a..0 re b (39)*

= fB-Jn(?r)+Ce' Nn(,r)]eJnO, a 4 r4 b (40)*

*A,, A2, B"1 , B" 2, C1' and C"2 are arbitrary constants which depend on n and

n1.2 and 77. If not clearly indicated, these constants and radial propagation
wave numbers are understood to have the double index In.

22



THE UNIVERSITY OF MICHIGAN
4386 -1 -T

where Jn and Nn are Bessel's functions of the 1 st kind and 2 nd kind of order n

respectively.

Since 01 = e=a AiJn(/ r)eOne, and
and

0= 6 + ja.) y AJ (' r) en,
z z n

it is easy to verify that

= e-J AJn( r)-a2A1 Jn ( 1 r ,Jfor0,4r4a,

(41)

and je n O  [, 1

) /- Jn(Y r)-A 1 Jn( ] r) . f~r~xacrl - a 2 (4 2)

Since the boundary condition requires that

(r 0 -7 r
Ir=b |rfb

the equations (39) and (40) can be rewritten in the following way

z= B1 tn (r) e j u 0 , for a.6 (43)

Yz = B2 Gn (r) ejnlG, for a4 r 4 b (44)

where

.. .. .._ 2 3
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4n(r) = in 01~b) Nn (er) - Jn (,Vr) Nn (vqb) (45a)

Gn(r) = in (77r) N~{ (nbl) - Jn, (1~b) Nn (71r) (45b)

B, = B111(45c)
N n (inb)

B2 = Bal (45d)
N' (11b)

n

N' (17b) = dN j (r) (45e)
n d(,7 r) r--b

J' (I b) = dWn (inr)(4f
n d(fr) r--b

Now using equations (41) to (44), In the relations (29) and (30), the transverse

components of the source- free solutions of Maxwell's equation (5) can be expressed

as

JnO~c in (77' nr)' 7 2~~'J( )nw _

L,(, (46a)

92T J' (7?& r) + nwl.46d fl2 Jn (71? r)

for 0 r <a
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4, e
qr2 E6 Gn (r) FBe Cn (r), forak r4b (46b)

+ PI(l Wadlz ' Wrerflill 1nJ ( 1 r)+n* z JJ O. r~ a (4

+ WA, . ,(r)

' B00 E6en Sn (r) + 'I$d B1 ejUU/(r for a4 r,(b (47b)

-ejnO6  [Alfl, R' JnI( , r)+ n rp i(1
r pi (a1,-) LI ofz A a3 rJ

-2 1'T J (12 r) + 71z ~a rj J for 0O-(r,4a (48a)

r=C 62 B ejnO0 Jn (r) + JX~B2 e 5O s (r) , for a ,( r4 b (48b)

[Alt 22? IS

4 F2ZMa 12Pr 2 n J r) + , n (I1 0', r~ for 0 i
aczA 3 (49a)

J WF042k e Jnfl6C(r+ nat B eJn Gn(r) fra r<.
0 1 2 (49b

___________________________ 25 __________________
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where S cz a, 1 2
- 1 (50a)

M= 12 (5b)

R a4a Owcocza 3 (50c)

T = wj 0Ao - A a4 c1l 0 C.za3 - 4A (50d)

R1 woa t W 0 g- X a 4 =M agur Cr 7,16 3 a4 ez (50e)

T' w aa A S %ASr'r -d2 a 3 a4 -z(5f
WC0~1Q ~ l a 3 . (50

S(r)= Jn 7b q~j -iG (r)n(qb (50g)

Cn(r)= = 1n(1)N' )-J. Ir .(b S ~/(r) (50h)
dr '

DIspers Eon Relation

Since [n the present problem the eigenvaluesof are discrete, the boundary

conditions satisfied by the total fields (I. e. , the filelds due to the presence of

the source) are the same as those satisfied by any Individual filelds (I. e. , source -

free fileld). Therefore, the following boundary conditions can be imposed upon

26 _____________________
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the source-free fields, z Z, 4 zo do and -1:

dz(a-) = 6z(a*) at r = a (51a)

60(C) = 0 (a+) at r = a (51b)

&z (b) = 0 atr=b (51c)

60(b) = 0 atr=b (51d)

z (a') =MWz (a+) at r = a (51e)

,h(a-) =Me(a+) at r = a (51f)

The constructions of z and 6 in a, r.4b are made in such a way that

the boundary conditions (51c) and (51d) are now automatically satisfied, since

. n(b)=0=-Sn(b). If the remaining boundary conditions in (51) are imposed upon

the source-free fields expressed in the equations (41) to (44) and (47) and (49),

the following relations among the arbitrary coefficients A,, A2, B1 and B2 are

obtained:

1 [aA2jn(,a)-,2AJn(7a)] = BJ'n(a), (5za)

A ,)oz A1  orr 1 J'(1 1 a)+nfzR a (52b)

1~~~ ~ ~~ [ 2 ni n~ia 5b

+A2 /joCr/r lj1 Jb(7 a)+nc z T Ja
-JA WP2  v( 4(a)

B jSn (a)+-' B1  a

27
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A2 [jn(n1a) - A, n 1a)] B2Gn(a), (52c)al a2  n )-A n'1

- r 2 1 , , _ "
-j 12? WE rjj 1~~ 2 ' T

L[AlEzza3  Jn1(j'a)+- Jnbja -A2 Ea)+ aE Jn(1J

-j 7o( + -- Ba G.(a) . (5d)

Non-trivial solutions for the constants A,, A2, B1, and Bj exist, if and

only If the determinant of the coefficients of these constants appearing In equations

(52) vanishes. The vanishing condition of the determinant gives the characteristic

equation (or dispersion relation). Instead of calculating the determinant of the

coefficients and then equating It to zero, one can also eliminate B, and B2 from

(52) and from the remaining equations It Is easy to obtain two Independent values

of the ratio A2/A 1. Now equating these two values of A2/A 1 , one obtains the

desired dispersion relation expressed n the following:
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It should be noted here that to obtain the expressions (53) and (54), some

useful relations (tabulated in Appendix A) have been used. These relations will

be used frequently in subsequent derivations.

When the ring-source m(9) is constant, n=O (i.e., -- =0). In this case

it can be shown that the dispers ion relation s hnplifles to

StiIz Go(a)J 1 (qj a)-qiM2So(a)Jo(1'la)) ipol/o(a)J1 (7a)+211 Co(a)Jo(11a)
1f[ /Az Go(a)jI(712 a)_ 2So(a)Jo(n2'a) - Itzio(a)J,(7)2a)+(2 j Co(a)Jo(lia) (5

Alternatively, equation (55) can also be written in the following manner:

(,j2 _.,12) 
__ 2-___ e )_(' 11 (ad. (a)J/(Ia)'j2(vja) -/2A(2(12 -') Co(a)So(a)Jo(?Ja)Jo0(2a)

J°(qj'a)Jj(12'a)
0 z2 12 Az M Co(a)Go(a)+A2CzS(a)So(a) (56)

+ Ja)J( ja) zS ColalGolal+2zM=(aISola) 0

A number of dispersion relations for various special cases has been developed

in Appendix C.

The solution of the dispersion relation (54) together with the relations (34)

and (371) gives an infinite number of discrete values of 1 1', 17 (and hence

also). The radial wave numbers i/ and %' can also be called eigenvae--Lihe.

domain 0!E r- a, and similarly I is the elgenvalue in the domain a 'r'_b, of the
30
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Now usIng (59) and the relations (52a), (52c) of this chapter and (38 (4)),

(38(10)), and (38(11)) of Appendix A, one can express B1 and B8 In the following

manner:

Bz Al 42 (60)

B = A19 3  (61)

where S J, I a) a)

= s '7? i a 3 ) i -(1 a a)

= ______ If -(a)-(63)

(12 - 1'2)SrGn(a)

Expressions for Source-Free Fields In Terms of Only One Unknown Constant A,

Since all the unknown coefficients A2, B1 and B2 are now expressible In

terms of the only one unknown A,, the source-free fields can be written In the

following way (e -J$z't)s assumed to multiply all the expressions for the fields):

ez = ( 1S412) S CJn (72 r) - M Jn (y1 r = A, fzo for 0,4r 4a (64a)

6Z = A f, ejn6/4(r) = A f z , for a( r, b, (64b)
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JozzwE°a 3enA 1 rt'R JJ( r) -(nwI°rr2
er 2 2 ,2 , , iR 1 2,)'Il Jn( r )

Grr 012 (r -7i ) r

(65a)

+ 1 ' T zJ'n(-2r)+4oCr f 2  r( r) 12 Af
112  r j rJ i... for 0$r ga

er= Ajejne (Gn(r ) - - 2 C.n(r) = Afr, • ..fora r~ b (65b)

zuz°c0a3eJn"Aj

0 2 2 22 12 v 1 L2 r 1

(66a)

+, 2 Jn( r) +nez T  = A, f8 for 04r a,

i=Ae - O (r)2 2 4(r) A1fe, for aer e.b, (66b)'=AeL ' '3Snr) J;--

Jw6o0 a 3  %A e n I

Az . . .. i Jn (i r) - Jn(,I'r =Algz, for 0erea 6a

[12J(17r r v2 A ~ ~ o O a , ( 6 7 a )

Ayz = A1 f3
e J"0 Gn(r) = Ag z, for a- r1Cb, (67b)
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W_ go6 A, ejnO j,-
A4#Rtt=z IJIrL1rYI'+ l t2,A2 JA'
r 2r, 2 2 A1 l1a ir r

(68a)

- ['2 T4 z a 3 J (Yr) + n72 Sr4 2 = A1 gr* for 0 _r sa.

%'r = A1 e jn 6  
- -- (r)+ - = Ag, for a' r 4b, (68b)

JtE. 0 
6z A, e~~ F-Jn' r

'2 = + ,n 'Jn( r
2 222.?r2 M Jn(17 r) + n Ezpza3 r-r~r7hT12 (1i -11x)

(69a)
_r A rr1 aI + ',3 =1 1(~}] A1 go, for 0 r . a
rr '/O -J~ A2 SJ'(Qr) + nT'za3

I m A ?- CG01r = Ago, fora.rgb, (69b)

Determination of the Constant A1

Determination of the unknown constant A, depends on the orthogonality

condition satisfied by the source-free fields. Since orthogonality conditions are

different* for a dissipative and a non-dissipative medium, the constant A1 will also

* Although the forms of the orthogonality relation given in (22) of Appendix B are
valid for both dissipative and non-dissipative media, they are particularly
suitable for dissipative media.
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be different for the above -mentioned two media. Here A, will be calculated for

non-dissipative medium only. For dissipative media the corresponding A, can be

calculated using equation (18) together with the transformations given In (24). The

primary aim here is to calculate the total fitelds with amplitudes due to a given

source. Therefore, to calculate total fitelds It is only necessary to fiEnd the ratio

IA1 Wn12 for any mode (eigenvalue) In. This ratio can be determined fromi the
Nin

knowledge of source -free f ields, as suggested In equation (18) together with (21).

1 A, jX
In other words, the ratio - Is given by

I 1 2 1 -(70)
Nin 27r

) O d )[frin-r g*68() - ffi( 9#,in(r)] r dr

The above Integral In (70) can be expressed In the following compact form

Nin b6 Ef(r r'r 32 (1

A1J 0 [f 0 rin (r) 91 in(l) 9*rin() 1  d 21rFn~n.

where

F i = Linc1,I 11irf-[Cj(Ar11;inM~j An in inpza 3] (72-1)

Fin2 = LWn6 rArl1inl7ain intzL[JPo7a2~n~bAa (72-2)

______________________________ 35 ___________________
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FL$= nMrz Ln[1Tbicr Ar;2 tnM + InRnfza (72-3)

F =- narJ '2. I [no T sa +~T ~SI]jj0* (72-4)

F w~ IN ~ * I3ln 12 IN (Inb)I]3 725
-n I'1tiI ln(7[flb)n

2J *
F a 21- J (I7 b (inb)IAA2 N Ybn(1b)]

n6 Ininr I n n I'n (1?Lnb)+M(IL (72-6)

Fgt, J(17b)N((b)+Mb)

Ln7 ln 2 I E2 n (~nb)n(In b Ig n n(72-7)

F2 2 2 b 7 8

Fn In12 Lc0E2IJ'21nI IJn(lhnb)I + IAs2 14t (72-8)~n

inL [,2 z a it*. R. R. - w1A p4 I~i C6 2 (72-9)

F nL *F4 3 12n-C Tn z *1a (72-10)
inlo nli in~ inI. Porr 1 In ~ in Sin z Rin T1 i n. a3 j

L* 1 r2 *' 3$A3 1t2 12 A in(2-1

itl nll 7 in[, z Rinfi-?za 3 -~oe r 1 r I2 inIMJ(7-)

2 * '2 * t2 * t
F n12 n. LLn-rr R in jf ' ini c r ;A r - W;A 2 in R ini,?iZa 3 J (72-12)

Fr 3 3 3*2 2* 2 '1

F n13 flLinl 2 in l in Lwoc r r I7 inl 2in Sin -Cz RiDTi/Jinlsza3J (72-13)
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Fi 4  2 L1 E 1 ir[ Po i ; - *12j *nSi (72-14)

F 1 3 3 12 *,2 **I

in1 nLin72 in f Iin~wA4o(r Pr~li n1 2jn Min +T -m-nm-n~z-za z31 (72-15)

W -nLin7 2 iJi T~2c Ti/Aza3 + P~s ~r S (72-16)

in[ 23 3 12 *'2

ni17inl Iing z i" W or/Srllinl12in (72-17)

Fn1 n 2rcL[T*n 2 *1 c;A + /4 12 * I (72-18)F1 = igiYrTnin in r r~ 011l inRinDi/4;A 3

W9= -nLnl' IiJ [4Tin~nin/4nza3 + ME3 /4 3;A 171~ J (2-9
2inO r li I S n(7 - 9

F = - n L e A1 12 12Fin20 2n in r~J er Cez [WiAOT WOO Iin za3 + T1 inlI inliner/4r] (72-20)

F in 1 2 *
in2l L ~31n 21 in ( 1 bNn (lib)-Jtingi 3 in(inb)N(1?b)]

(72-21)

F 9 9 N 3mn nb-l 2 nN (1nb)N(1,nb)]in22 ~L12in 31 n ( Nn CJ n( n

(72-22)

F - jn a* 12 1.--3 2 i i * n 2in 3i Jn~1nb)J(1ib) -k 14 j~2 2 93ie (iJ inb)Jn(1?inb)J

(72-23)
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in24 [O22 31J2injnjn) 'nnb)4nei21n93innlin nlj'pC~Jn b)N('Ib)jlcJ.m b) b'

(72-24)

F _n 2 2)

Fn25 2n- in 21n 3nn(qb)J( kIb)k2 ( 2 e 3 1n 2 inJn(lnb)Jn(linb)]

(72-25)

F in[k6 * 1 N (lfnb)-* 2Fin2 - nfin k '223in*2in n(linb)Nn(- b-in92in93inJn(finb)Nn(jinb)3
(72-26)

= k 31n 2nJn(inb)Nn(lnb)- 2 in' 3 inJn(1inb)Nn( inb)

(72-27)

jn 1 2 *2*
F - N'm--k 2 *

in28 in 2in 3 n N n ( in b)N n ( I in b ) - k / 2C 2 C 3 in21nNn(I inb)n(inb)J

(72-28)

Fin29  - ['12 I121nl n(I9 3n I b) n  + n b)  (72-29)

Fn ~ in22 122

0 1 Inz12 2 IN(1Inb) I2+ °I'2'I I+u( lNbb)I] (72-30)

2

=-., 7n -coC 2 j 1*2n I Jn(linb)Nn nb) +,uoAlg31n Jn(lnb)Nn(linb)]
2-in (72-31)

F [r C2 211 J(1 1bN 1 7 1 b)+p 0I2 j 1J( 1 ,b)N ( 1,b)]in32in
(72-32)
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W2EC2 4 E a 3

0 z in
Lin 4 ,2 , 2 ,2 , 2 (73)

IGnl Ill'n 12nin i nr )  1 I

J= J(I'inr) J rdr (74-1)

i= I LJ ('v: i r) J  ( 2
nr)] rdr (74-2)

Imn3 = S ['(~'ar) Q( zir rcir (74-3)

1111n= [J'(1r n(1r u d (7-5

a
[n = (1 jnr) Jn(1lr2 rdr (74-4)

I5(lnr) J(n rdr (74-5)

a

Iln6 = i n ( li n r ) *'n ( li n r )lrr(46

b5
Iin( = ( ir) Nn(1inr]) rdr (74-7)

a

3in8  = _ _Nn(_inr) _'n(_inr)___ (74-8)
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a

= ~ ~iiir Qi] dr (74-9)
d.l,,r 0?.in

0

Itn1 = (11, nr) 1n(12nrU dr (7/4-10)

I Jn(llnr) J n('1inr)  dr (74-12)linl4 = r (74-14)

Iinl5 =  J(Q)nr J n (12nr) d r  (74-14)0I I Fj $ r

Iln16= jn(',nr) rn'nr dr (74-13)
I = Jn(_ _ inr drI4-0
'm =S['(7; r) ~~iir) dr (74-16)

iil6 [ L'in' Jn(71 r] 741

'm?= J 12r) (i r] dr (74-17)
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Jn l r) Jn r)

In18 n ( 2 "r J( i -1  dr (74-18)

r
2 1 r( r dr (74-19)

0

'ii2 =~[Jn (72nr) *n r (74-20)
0

b

I1n2l f 5 [J(, Nr) r dr (74-21)
a

'in2l 0 li [(iar) *(rd2
a

Ij~ = l[n7jr) !(7 1 r] dr (74-22)

a
Ij ~ r) At ( N7 1 , 1 r] dr (74-24)

a

Iin25 LNn(,linr) A n(/lnr] dr (74-25)

b

in26  = j( 1,5 [ r) N'(1nr4 d1 (74-26)

a
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b

a

I/28  = n '( nr) Jn(q1 r dr (74-28)

a

11129 -N( r) dr (74-29)

a

- n (jinrn( 7n r) dr(
in30 r dr (74-29)

a Jni r Nn( )inr)

In3 = n nr ) ] dr (74-31)

a

Jn 3 2 n ( [ r ) n ( I n r dr (7 4 -3 2 )

a

It may be noted here that for n = 0 (i. e., when - 0), Fn 0, for 9,

and all the integrals I in, for 8 can be evaluated in closed form. But when

n 0, the above integrals can be expressed partly in closed form, partly in

series, or they may be calculated numerically also.
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Expressions for Total Fields (for loss-less media)

Now substituting the expressions (64) to (69) and (71), in the equations

(22) and (23), the complete fields due to the magnetic current ring source can be

expressed in the following way (suppressing the time dependence factor eJlt):

;jginz + jnO

E 4r I I [Singlinjn(linr n Mi~nI.

i, n In -nin

(75a)

;J~finz + j-0

Ez -4v i, n F in. I int 92inoin(r ) .

(75b)

[ CC2 in(c) n in Gin Gin(c)

+ iI , for a r b
in in

c j f r43
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jw 0 C/AzC a 3  
z n neiJtZ+ JnO

Er 4rc= +" X , .' 2 2 3 F

o2 inn ( i n n intin )

"Lt' r)  n 0 r Ir ai J (0n)

2in in Tin2znin no 4 ( inr) r

rrD Ln rin

+ 9 1n(1in nC2J 01r'Art i (qfnr + njr) for 04r 4a.

(76a)

- ofinz + Jn1

J w C22 I (c )  noling3inGin ( ) .
r TijIr V +

i. /o 3tn~r in 1Kn I2~)

- , for a (rb

(76b)

,_ __ 44 ......
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;jfz+Jn9 j e2 1 C i(c) Of G (a

me i1-0 I in +- In 3in in
P 5 o(o a n odfi nTo z 3 t__ _In__ __ ___ __ __Eo 4, + ~ .2 t p t 2 2 p2

Le J-'r - WAornn

+~ 5* c 12 1r 1 r__n___n_2Wfo04~
lin f o rr Ii 2injn( '12in r) in r ,fr~r

(77a)

-c 2-m9 C (C) n c
oe 'n'"o 2ni + In3 i

I, n iel in in
Au!

F n~ ~ 4Jr) j lpP2 9 iSin(r)1
r - 1i 1 , for a,4r.<b

(77b)

45 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



THE UNIVERSITY OF MICHIGAN
4386-1-T

+-jaez+jnl9

HJo z 3 n r 2

iJwco 2 1nc in(c)+ niiinot 9 " L(' c))i
0 22in + in in ir)r- J ir for O(ra

linc i

(78a)

je z+jnO 7 * * *m ne inE C29t ,^ C n(C)  n~ln g 3G In(C)

H n -- 1 0C~ *f ~ )o21nin~( + -n 3 1nG 1cg) 1 Gi (r)z w * *2 JiHz + -i, n . FininL [ n[ It, 0 in c l iininr

for a,4r4b (78b)

Tiae z+Jno* *

cwc o z In-me ' Jwel  z " c-o inC (c)

r 22 / ,2 ,2 2 t2

2 2 1n 1 n . (c i t t , M M /.2,,,. i
* J ~V 1 R1  A Ma 1J( 1 r) + rc In n In n z z3Jn n in r
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glin L in TianiJz za 3Jn(12inr)+nllinS incrmr  for O r < a

(79a)

-Tigz+jn0 o~ c

Hr -4 " I -E + (c)

in in L in c in

x 1 (in + -in 31nSinr] for a.<,r~bX~ t -T r  ltn frarb

(79b)

jwcc e Je T jin z+Jno wc 2 2 8in(c)H0  = Jcs£z l " , 'un. +

-, - r- rjj i, nf In in J
-fn i 46 r~ iin (0)]Si C2n) 2i n 2 rin

ni 3 nc ) n[- , , n n n n J(' r )

- ~€~,~n~,rjl 2n (1 r)+nTn -An Jn(12 )JJ for 0 a

(80a)
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in -me0 w JWE 21 C c 0
~21nin + n Ain in c

-jW w 0 69 21nC in(r) + na~.n nGi (r)1  for 0O(r4 b.
I in Jnr (80b)

Wherever the sign ± or - appears, the upper sign corresponds to the propagation

in the positive z-direction and the lower sign for the negative z-direotion.

Expression for Average Power-Flow Due to a Magnetic Current Ring Source

The average power flow is defined as

P 1 Re dS
av 2 sK H 0S

(81)

= -Re E • Hxz dS2o

where Re means real part of

E = total electric field due to the source at any point

H = total magnetic field due to the source at any point

Now using equations (18), (21), (22) and (23) in (81), the expression for

P can be written in the following manner
av
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- 2 'i in in

161 
az FintlinL

(83)

In particular when n = 0, 1. e., when the ring source is of constant

amplitude, the expression for the power flow reduces to the following form:

Pay 4 1 .e 2 F iotIioz

It may be noted that for non-dissipative media the quantity inside the

square bracket is real. Any individual term in the series in (82) or (83)

represents average power flow corresponding to that particular mode in (or i

when n = 0).
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II

WAVE PROPAGATION IN AN ANISOTROPIC PLASMA:
SLOW SURFACE WAVES

Introduction

In this chapter the general results of the previous chapter will be applied

to the study of propagation of electromagnetic waves in an infinitely long aniso-

tropic plasma column enclosed by a dielectric cylinder, which is also enclosed by

a perfectly conducting metallic cylindrical waveguide; 1. e. the geometry and the

source of excitation are the same as those of the general probelm except that in

the present situation the anisotropic medium is represented by a plasma column

with a uniform static magnetic field in the axial direction z. The relative permea-

bility 0 2 of the dielectric medium which encloses the plasma column is assumed

to be unity.

The plasma is considered to be fully ionized (i. e. macroscopically neutral)

and there is no drift velocity (d. - ) of electrons or of ions, i. e. the plasma is also

stationary. If one also assumes --at the illuminating electromagnetic waves are

weak, then it is possible to describe a plasma as a dielectric medium. In this

analysis it will be assumed that the plasma is homogeneous, i. e. its density (and

hence dielectric constant) is not a function of space.
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In the presence of a static magnetic field, the dielectric constant of the

plasma becomes a tensor, which means it is an anisotropic medium. J the static

magnetic field is applied in the axial direction, it can be shown 2]C3]5j that the

plasma has the following dielectric tensor

rr JerO

E?-+ -jcE E (1)
-J6 r 'E8

0 0
zz

where
2 P'

gi(1-

Srr 60 ' +r p 2 W (2a)c w_ - (1 - t .2

2% Wp
4E r: E Or•I j p7 7 (2b)
CrO ~r w2 - l (1 ._ _r):

C W

2

and zz Cz  2 1i- 2(202(1 iv)

v = collision frequency (radian) (3a)

Wc = me cyclotron frequency (radian) (3b)

qe charge of an electron (3c)

me mass of an electron, (3d)
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B0 = d. c. magnetic induction (3e)

wp= ( ) e/2 = electron-plasma frequency (radian) (3f)

Ne = electron density (3g)

co = free-space dielectric constant (3h)

In the above analysis the motion of an ion due to a disturbance is neglected

in comparison to that of an electron. The relative permeability of the plasma is

assumed to be unity.

It can be shown from the relations in (2) that the components of E satisfy

the following relation

C2  (-c)( z - C) (4)

An interesting conclusion can be made from the relation (4), namely el = 0, for

either cz = er or cr = 1. The physical interpretation of these results can be given

in the following way. For isotropic plasma (i. e. when Bo = 0), cz = cr , and el = 0.

On the other hand when Bo -4 (i. e. wc - coD), Er -* 1 and el -+ 0. The above

statements can also be verified directly from (2). 1 may be noted here that the

collision term no in the expression for C in (2), represents loss in the plasma.

Although the various dispersion relations developed in Chapter I and in Appendix

C are valid for a lossy plasma, the complete field expressions obtained in the

previous chapter are not. On the other hand if it is desirable to find the expres-

sions for a dissipative medium (i. e. plasma), one must use the appropriate
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orthogonality condition and the resulting Green's functions which have been dis-

cussed in Chapter I as well as in Appendix B. But here only the loss-free (v = 0)

plasma will be considered.

Although the results obtained in the previous chapter are valid for all

possible modes of propagation in the structure, in the present chapter attention

will be directed to the analysis connected with slow surface waves. The slow

surface waves are those waves which decay radially in the dielectric region and

propagate along the interface of the plasma column and the dielectric, in other

words for such slow waves one finds k- > 1, where c2 is the relative di-

electric constant of the medium surrounding the plasma column. This medium

may represent a glass tube. Various passbands for slow-wave propagation will

be obtained in the following investigation. Some of the passbands depend on the

range of the values of the ratio v > 1, and some passbands do not depend on
kf 2

the particular values of this ratio, provided - > 1, the condition for the

existence of slow surface waves.

Finally numerical computation will be made for a special case.

Conditions for Slow-Wave Propagation and Determination of Various Passbands

In the following analysis only the expressions for the radial wave numbers,

if and rf , will be considered. These quantities do not depend explicitly on any
1 2

particular boundary, except that the geometry is cylindrical and uniform in the
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z-direction, thus the results will be true for any such structure, closed or open,

which can support slow waves. For a particular structure, one must consider

the solutions of the respective dispersion relation together with the following

analysis. Since the solution of any dispersion relation, determines only a particu-

lar set of values of I and 17,, the limitation imposed on the values of I and
2

which are obtained from the expressions for nj2 and r12 (valid for unbounded

medium also) is furthermore narrowed. Therefore the requirements which are

obtained from a study of the expressions for r 2 and 72 alone, are nothing but

necessary conditions of wave propagation. The sufficient conditions for propaga-

tion of waves are provided only b)y the simultaneous solutions of the respective

dispersion relation and the expressions for r 2 and

The expressions for radial propagation wave numbers r and r can be

written here in the following way

,74 = v + (5a)
1,2 - v (a

k2 l -y)l2 -lX1 -x) +yJ k2 xy(132 -1)

x+y - 2(x+y - 1)
(5b)

2 J(82 _ 1 )2 x2 + 48 2 x(1 -y)

2(x+y - J)

where
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V -- 2(x+y-) L J+ 2y(-y (6a)

k4(1-Y) r 2 2 y2
- (1-)1) 2 (l-x) + 2Y( 2 -1) + (6b)
x+ y - 1

2

w2x = "-- (7a)

2Wp
y = .. (7b)

z - y (7c)

x+y -1-
(7d)

=I -x__ (7e)
x-1

= (7f)
k

In the above definitions of cz , Cr, and el, the collision frequency v is

neglected.

It can also be shown that
- 2 2

[22-:U , j [2_ 1) 2x2 + 4032 X(j (8)

In the dielectric region
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-t2= (9)

since A2 = 1.

2

Therefore for slow surface waves, t < 0, and

2 2
at - I1> 0

k2 k 2 -12

i.e.
>1

2
or 117 = 2> C2 (10)

k

where r=-jS 6> 0.

It will also be assumed that E2 > 1.

Since it is assumed that both plasma and dielectric are non-dissipative, the

propagation wave number * is always real. Although the expressions for 772 and
1

V,2 show that these radial wave numbers may be complex, on physical grounds
2

only the real values of 1 2 and r42 will be allowed. For example* if complex

values of 1 2 and I42 (which are complex conjugates of one another) are allowed.

this means that there exist growing waves showing instability of the plasma in the

* The primary reason for allowing only the real values of q and 12 in a non-

dissipative medium, is that the power flow, the characteristic impedance, etc.

must be real for such a medium.
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radial direction. Therefore this apparent inconsistant situation will be avoided

by allowing only the real values of and in the folowing analysis.

The following three cases specify the conditions for which 1712 and t7,2 are
1 2

real.

Case I

u<0 in this case
r} 2 > 0 and (1a)

72 2 < 0.

Case 1 u> 0 1 in this case
v>0, J r42 > 0, and (11b)

and v2 -u> 0 ri2> 0.

Case IIl u > 0, in this case
v< 0, I 42 < 0, and

and v2 -u> 0 72 < 0. (11c)J 2
The regions of u and v in the above three cases are shown in Figure 2.

2 and r 2 become equal on the parabola v2 = u and both of them assume complex

values inside parabola, which contains the positive axis of u. Therefore this is

the forbidden zone for u and v. When y < 1 (1. e. when p < ), it is easy to show

from (5) that 1 2 and r12 are both real. So even if one considers instability in

plasma, this does not occur for wp < w, provided the medium is loss-free.
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In the following detailed analysis the possibility of the above three

individual cases, i. e. the conditions under which the parameters x, y, 13, etc.

have to be chosen, will be shown. These conditions on the parameters, which

are necessary, will give the maximum passbands of slow wave propagation.

Before starting the actual analysis, it will be convenient to introduce 1P = - 1

in the equations (6a), (6b) and (8) which can be rewritten in the following manner

(for slow wave A 2> c2 > 1):

u =  k2 (1 -Y) [2(1 -x) + 20y + y2] (12a)

x+y -1

* =  xy-2(x+y-1)1 +2y(l-y) (12b)
2(x + y-1) 1

2(x + y - 1)
2 i2v -u~' 2A.. 1 " [ 22+4(/+l) x(1-y)J (12c)

0+1- = > C (13)

Case I

u<O

2 > 2, r1' <0

This situation can be satisfied in the following three ways.
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1-x>O

1 - y > O (14a)

l>x+y-l>0

1 -x<O

1 - y < 0 (14b)

> Y(+ 4r )
X-1

1 -x<O ]
1 - y > 0 (14c)

< yY (1+x-1 II

Although the condition in (14a) does not explicitly depend on 1, for slow wave

must satisfy the condition (13). On the other hand the conditions in (14b) and (14c)

show that besides the restriction imposed on x and y, 0' must satisfy two simul-

taneous conditions. More precisely, the inequalitites in (14b) suggest that q/ must

be greater than a certain value, . e. the wave propagation which satisfies (14b) is

possible for a value of 0 above a certain value. In other words this paasband of

wave propagation depends on the degree of slowness of the waves. On the other

hand, the condition in (14c) can be met only for a definite range of i, namely

2 -< P - (+ J)
X-1
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where 1 -x<0, andl -y> 0.

Before investigating Case II and Case Ill, it is desirable to find conditions

under which u > 0, v2 - u > 0, v > 0, and v2 < 0, respectively.

For u> 0. one finds the following possibilities

I - y < 0
(15a)

1 -x> 0

1 -y< 0

1 - x < 0 (15b)

0, < Y 1 (1 + 4-x)

I -y> 0

1 - x < 0 (15c)

0> Y (1 + F-)
X-1

1 -x> 01

I - y > 0 (15d)

x +y -I<0

2
For v - u > 0 the following conditions must be satisfied

I -y> 0 (16a)
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(here one may choose either x + y- 1 > 0, or x+y- 1 4 0)

1 - y 0 1b

> 2(y-1) + 2 y-1)(x+y-1)
X x

The following three situations satisfy V >.0:

x+y- 1 > 0

1-y) 0

xy4( 2(x+y - 1)

2y(1 - y)
2(x+ y- 1) - xy

(17a)

x+y- 1> 0

1-y)O0

xy> 2(x+y- 1)

1 -y( 0

xy ) 2(x+y- 1)

9" xy- 2(x+y- 1)
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Finally one obtains the following four possibilities for V 4 0:

I - y /, 0 J (18a)

2(x+y- 1)> xy

1 -y (0

xy > 2(x + y - 1) (18b)

< ( 2y(l - y)
xy - 2(x+y-1)

x+y - 1 > 0

1 - y 0 0 (18c)

2(x + y - 1) > xy

2y(1 - y)
/)2(x +y - 1) - xy

x+y- 1 (0
(18d)

1 -y> 0

To satisfy the requirements for Case I and Case III, it is necessary to

satisfy inequalities ( lib) and (11 c) respectively. It can be shown by a little analysis

that the following are the conditions by which Case II and Case III can be realized.
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Case 1I

This situation can be obtained if the following conditions are met:

1 -y, 0

1 -x,0

2(x+y- 1)+x xy- 2(x+y- 1)1 > xy +2(x+y- 1) (19)

> xy+ 2(x- 1) A(y - 1) (x+y- 1)

The inequalities in (19) are obtained from (15b), (16b) and (17c). There is

no other possibility which can satisfy Case II.

Case III

In this case one can show that there are only four possible conditions as

follows:

1 -y >0

1 -x < 0 (20a)

x- 1

Note that this condition is the same as (15c), which also satisfies conditions (16a)

and (18c) automatically.

___64



THE UNIVERSITY OF MICHIGAN

4386-1-T

l-x>0 1
1 - y > 0 (20b)

x+y-1 (0

The condition (20b) is the same as (15d) which also satisfies conditions (16a)

and (18d).
l-y< 0

1 - x > 0 (20c)
) 2(y - 1) + _2 y )(--1

x x

This condition (20c) is obtained by combining the conditions (15a), (16b) and

(18a). It may be noted that condition (15a) automatically satisfies (18a) also.

The fourth possibility of realizing Case M is obtained by combining the

conditions (15b), (16b) and (18b). Since it is not obvious that these three conditions

can be satisfied simultaneously, it is necessary that they must meet the following

requirements (a detailed analysis is omitted for the sake of brevity).

l-y< 0

1 -x <0

xy > 2(x + y - 1) (20d)

2(x + y- 1) + xy V'>xy +2(x - 1) V (y- 1)(x +y- 1)

>2(x + y- 1)+ x jxy- 2(x+y- I)
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Thus it is found that when the condition (10) and any of the following condi-

tions (14), (19) and (29) are satisfied simultaneously, one obtains maximum pass-

band of slow wave propagation. These conditions are necessary for slow waves.

Study of Dispersion Relation for Slow Wave Propagation Under Various Special
Situations

Although the various results together with dispersion relations obtained in

the preceding chapter are valid for any arbitrary angular variation of the magnetic

current ring source, in this section only those dispersion relations which are inde-

pendent of angular variation (i. e., n = 0, for constant amplitude of the ring source)

will be considered.

Since the solution of the dispersion relation, appropriate for any particular

case, together with the expressions in (5) for 1tl2 and n,22 gives exact information

of the propagation of waves, and as this solution cannot be obtained analytically in

general, the information obtained here without actual solutions will give only nec-

essary conditions for slow wave propagation. In general, the actual solution can be

obtained only by numerical computation.

+Static limit: This static limit is a good approximation in the following

situations:

1) circumference of the plasma column is much shorter than the wavelength
of the operating frequency

+Trivel piece in his work [ 8J discusses this problem in detail and his method of
solving this problem is different. Here his results are obtained as a limiting case.
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2) for extremely slow wave, i1.,X0" 1

This dispersion relation in this case for n = 0, can be obtained from the

relation (3) of Appendix C, and it reduces to the following form:

C 1 1 J1(7'1a) I1 (4) Kg(b) + I b)K (4)

C:19 J0&1'1a) -I( (b)K (9a) - I (Ifa)K 69,) (1
00 0 0 0

where
-71 (Cz/C r) A23

(22)

The above relations show that the dispersion relation and hence fields do not

depend on 77'2 in this limit. Moreover, in this limit the magnetic current ring

source excites only E-type mode. But in a general anisotropic medium character-

ized by c of the form shown in (1), pure E-type and H-type modes do not exist,

i.e., they are coupled to each other.

From the properties of modified Bessel's functions it can be shown that the

right-hand side of (21) is positive and greater than unity (it approaches unity as

'K ). if C z/C r 0, nl', is real, a solution of (21) is possible.

Since c /C = (-it(x-l) < 0
zr x + y -

either
x >1

(23a)
v;'>
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or
orx(1 1

y/ 1 P (23b)

1-.x+y.2

If Cz/C r > 0, 17', 2 ( 0, and T'11 is purely imaginary, the dispersion relation (21)

becomes
7 I Oa fcz/7 hIa)K (*tb)+I (1b)K?(a)

r C2IW.f-c 1 (24)

r E2 I° a ~r7F) Io(#b)Ko(oa) - Io(Oa)K ( )

A solution of (24) is possible if cr e 0, Cz < 0 (since C2 ) 0). As it is also known

that Ij(z) (1(z), for any z > 0, it is necessary that

C r " f > C

or

+ > C2 (25)
1 -x V x+y-1

In particular if C2 = 1 (. e., when the plasma column is surrounded by air), the

inequality (25) reduces to the following

(x+y- 1)y- 1) > 1 (26)
1 -x

Finally the inequality (26) can be shown to be equivalent to the following two

passbands for slow waves when the dielectric surrounding the plasma column is air:
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1->01

1 - x > 0 (27a)

x+y >2J

y-l1(01

1 -x(<O (27b)

x+y( 2J

It may be noted here also that when the plasma column is surrounded by a

dielectric e2 > 1, the passbands are reduced further.

When b = a, i.e., when the plasma completely fills the waveguide, it can

be shown that the corresponding dispersion relation (in the static limit) reduces to

the following

J (' 1 a) = 0 (28)

It is easy to show that only real values of 'l, can satisfy the above equation

(28). Therefore, in this case also it is necessary that ez/C r < 0.

A study of the relations (21) and (22) reveals that for x = 1, y = 1 or

x + y = 1, the dispersion relation (21) does not possess any solution, which is

equivalent to saying that these points represent cut-off for the slow wave propaga-

tion.

It may be remarked here that the passbands for slow wave propagation when

the plasma completely fills the waveguide, give maximum range for the case when
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the plasma column partially fills the waveguide (provided T'1 is real) in the static

limit. These maximum passbands are depicted in the following Figures 3 and 4,

subject to the conditions (23a) and (23b).

1711 + -C)wC (29)+

Since group velocity is defined as dw/dk*, Figures 3 and 4 show that this

value can also assume negative values - which proves the existence of backward

wave in such a structure.

With a few more remarks, the discussion of the static limit case will be

concluded. The static limit results are reasonably valid for extremely slow wave

propagation, as pointed out in the beginning of this section. In this limit rl'2 does

not appear in the dispersion relation, showing that the field components for

extremely slow wave propagation do not depend on 77'2 , when the source of excita-

tiou is a magnetic ring current. In other words in this limit an H-type mode is

not excited. This does not mean, however, that in this limit V =0. In fact,A 2

I' = - ~ , a large imaginary number, which shows that a wave dependent on

decays away very rapidly. So it may be conceived that in this limiting condition

the H-type mode is very weakly coupled with the E-type mode and the components

representing H-type mode are also very highly attenuated. It may be noted here

+ In [ 8 , Trivelpiece has also obtained similar results.
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also that the results for 9 2 C2 >> 1, essentially correspond to those for static limit.

General Dispersion Relation (when n = 0) for Slow Wave Propagation

It can be shown from equation (561) of Chapter 1, that for slow waves (when

vi=-j S, > 0), the dispersion relation becomes

z(T1 2
- v1?2) J((a) 0Jil 671,a)Ji (17'2a) EC267' -2 2_ 1 2)a (a)§ ! (a)J 0 6'ia)IJ 6'2 a)

k 0(I -)J(v2~ MEza(a)d (a) - eS j (a)i (a)]

+ J0 via)(v'a .9~ ()(a- M a)(a)] =0

IE 2 0 z 0 0( 3 0 )

where

=? 6..2 = 04 2 -* 2  (31a)

if /k =(31b)

M k k2  /C )(C r ) 92 (31c)

z r 2

(a) 1 I(.6b)K (Sa)- I CSa) K(S b) (31e)

G (a '1(A b)K (Na) + I(a)K(6 b) (31f)
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S 0 ) 1 (S b)K(Sa) - 1 (4Sa)K(,Sb) (31g)

C (a) = )K (Sb +I( b)KSa) (31h)

In connection with the solution of the dispersion relation (30), appropriate

for slow waves, no general discussion can be made. Only a numerical solution

subject to the expressions for 1?112 and 172 given in (5), can give the actual

nature of slow wave propagation.

The dispersion relation (30) will be solved subsequently for a special case

stated in (14a), for which u ( 0, if,~ is real and 171 in imaginary.

For Zero Magnetic Field (with n = 0)

It has been shown in Appendix C that in this special case the dispersion

relation *as the following particular form (for surface waves)

C Jifl'ia) 11(h a)K (6 b) + I (J b)KIAS a)

;1iewj &I'a) K I6)(6 a) - I (Ja (J b) (2

where

fi 1 ' 2* = - p (33a)

7?~ OCE2_ 2 2 (33b)

This result agrees with that obtained In [7].
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In this case of isotropic plasma only an E-type mode is excited, due to the

type of the source of excitation chosen. Since cz is always less than 1 and c2 ) 1,

it can be shown from (33a) and (33b) that when n is imaginary, 171, is also imag-

inary. In this circumstance a surface wave is possible if c z 4 0, moreover, since
1 1 (Pa)

the left hand side of (32) is greater than unity, p1'd ( 1, and o( aT < 1, it is

also necessary that IjzI/2) 1, i.e., w

For Infinite D. C. Magnetic Field in the z-Direction

In this case the dispersion relation for slow waves has the same form as

(32), with ti 2 = Czr? = -Cz 62. It can be shown, [7], that slow wave is possible

if e ( 0, which makes il' real. For zero or infinite d.c. magnetic field in the

axial direction, an elaborate investigation has been made in [7] .

Proyagation of Slow Waves in an Infinitely Long Column of Plasma Embedded in an

Unbounded Medium, with an Axial Uniform Static Magnetic Field

To investigate all related results a ' the nature of slow wave propagation,

in this case, it is only necessary to let b -4 uo in the corresponding results of

the waveguide problem, with q = -62 = k2 e2_* 2. In this case the dispersion rela-

tion takes the following form which is equivalent to equation (22b) of Appendix C

(with Mr =' =' ;'=O, = )
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Cz J(__a)J_(_'2a) C2 K2 (8 a)

7'1 T1'2  J( 1 a)Jo(7,2a) + 6- K2 (S a)
0

E2  KI (S a)[ J1(71la) Jl(n'2a)]

1 17' 2 (TJ'2- 1'7) K (s a) J (ifla) Jo (q)' a)

C a) J1 7'2a) J1 (n'la)
+ tj t 11=0K(-- -772+n'n' (v2-l') K 6a) 1  J(t2a) J a) 0

0 17 0 0(34) +

The following identities are found useful

C2r(1 e EzXS, 2
2 + M1,1) = ,Cz(k2 +A1')l(OC + g2) (35a)

andr

f jCXSvi, 2 Mt1 2) (S 2C,2]
rl- z '- ) r C z(S-M)[kC r -"A)(1+ ) (35b)

To derive relation (34) it also has been assumed that "l 0, which may beae
interpreted as following from taking the excitation to be a constant nagnetic

current ring source.

When the d.c. magnetic field is either zero or infinity, only the E-type

mode is excited due to the type of source chosen here. In this particular case the

dispersion relation takes the following form

+This result agrees with the corresponding result in [4] , when the identities
(35a) and (35b) are used (with C2 = 1). It should be noted, however, that to obtain
radiated fields in this configuration the present limiting process is not valid.
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ezJ1  671 a) Kl ( a)

T'l(1EJ 0 1'la) K 0( a)

If the axial static magnetic field is zero, er = ez and Y1111 = kez -'2 the

condition of slow wave is exactly the same as stated in connection with the similar

situation in the metallic wave guide, namely, cz < 0, and jez(/I 2 > 1.

On the other hand, if the magnetic field is infinity, a slow wave is possible

if c (0 and nl'2 =e S2.z z

Static limit: It can be shown that in the static limit with b -4 c, the dis-

persion relation (21) reduces to the following expression

Eryl'1 J1(n1la) K, ($a)
C2  * J l0 (r 1a) Ko(ifa)

where
n t 2 a t - -

(38)

If z/Cr < 0, then it 1 is real and a solution to (37) is possible for a slow

wave.

If Cz/C r > 0, then n', is imaginary, i.e., n', = -jp, where p > 0. In this

case (37) transforms to the following form
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C r pil(apl Kl(Aal 
39

C2)(io(aP) Ko(ufa)

Since K(ja) >1 and I- ( 1, it is necessary in order for (39) to
00a 0 a)1EPhave any solution that cr ( 0 and also > > 1. It has already been stated

r C2

above that cz/er > 0, therefore, c z ( 0 and c r ( 0.

If one writes = x- 1 , Cz = l-y, as defined in (7), then the conditions
r x-1z

c ( 0, cr , 0 and Lerl > 1, become equivalent toAu

(y-1)(x + y- 1) 2
1 -x

y- 1>0

1 -x>0

(40)

Note: The discussion on page 497 of [4] of the situation where u = 0, i.e.,

r7'1 = 0 seems to be inconsistent. The first reason is that when 7'2 = 0, it can be

shown from the general express iws for Et and Ht appearing in Chapter I, as well

as in Appendix A, that electromagnetic waves which can exist under such a situation

are TEM only. In this statement it is also assumed that the diagonal components

of I are finite and non-zero. But a TEM wave cannot exist in a structure con-

sidered by the authors of [4] . A similar inconsistency appears on pp 183 - 185

of [6] , discussed by Agdur.
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Secondly, the authors of [4] consider a case when y -+ c (and 7'2 = 0),

and simplify the dispersion relation to an expression containing a logarithmic term,

although the modified Bessel's functions (Z) and K (z) do not behave as logarithmic0

functions for large arguments.

Any other interesting situation can be studied by considering the corres-

ponding dispersion relation given in Appendix C.

Expressions for E Which is Independent of Angular Variation (i. e., n = 0)z

Since E plays an important role in a plasma, its expression will be givenz

here for n = 0. IEz will also be calculated numerically as a function of r for a

special case of slow wave.

Ec mm e 21C o S J(t,' r) - MJo(v7'r)
Ez 0 -J2C 2 i" *irl I_ A- St it oi2

for 0 r a (41)

Sl91tJo(,72la) - MtJo(,7la)92i 1 (17i2 -') -v )J&ola) (42a)

21 ii

Si we- (k - j 2 ) - t (42b)r i it
r

EM, We A ( j(2) . 7 8 (42c)I er 1 21
r
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2 2 ** I"

F Le R (42d)
11 i r z 17 cvl[ jr*2 MtR - o'2

F717 =Lcc 1w A07121T' AD(EI - R,'r i l(42e)

12 1rzi2 11 L oli t Oi~ liQ i ir~ z  121 r~

L, * 2  + , (42f)
F13 i rz7'li2i i Lrn2 1 i MO ii R

,7 * f2
T,, cM + c , Ti (42g)

F4 =-LEr Z 1,7i1 I2 I 3'io 1 2Iwo'+ rTj 1 sr] (42g)

F5 = -o 2 I INob)12 +, I32 IN,(&,b) 12  (42h)

15 17L [E 1g2 10301l '~

F1i.1 = - i o (,n o6b)1 No(ib)+ ,olgb (42)

F6 V - j 0°2'21l20yb)N°(ib)+ " 3 42Nl(b)Jl(7b(

Fi8 - I2 ' r21 J(rlb) 12 + Po 1%32 Vl(,ib)12 (42k)

31 2 0,0 _ n,2 rGo(a)  9 o(21a  0 o 1 1 1

(n 22 2'

Li ' I (42m)c( 1 2 ( a) a- 0? (421)
r 21 1 1

c M(k r (2) - k4 z 2

R r r (43a)
i~ uw 0 z
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EM*-3~~k~( 2)
R r ii 1z l~r. i (43b)

z

,(r) =JOinb)N 0 (r) - J 0 (ni ON 0 fn b) (43c)

s io(a) =J, (n j b)N1 i ia) - J1 (n ,1a)Nt1&i b) (43d)

G io(a) =J 1 (v71b)N 0 Ya) - J0 (n1 a)N1 (n1 b) (43,)

C io~c) J, (n 1c)N 0 (b) - J 0 (nb)Nijinc) (43f)

= l J1(n'1 r) J*(l'r) rdr (44a)

1, J, &lr)l 1&i'2 r) rdr (44b)

113 = i (nr Oil (n ~r) rdr (44c)

114 ~ n W, J 1 %) l (' 2 r)rdr (44d)

1t5 = l~ J1 1r)j1(v tr) rdr (44e)

I16 WJ 1 (t7 ir)N1&j~r) rdr (441)
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I7V = J1(,n irN101,r) rdr (44g)

1t8 2 Ni~nir)NI(vlr) rdr (44h)
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II

PROPAGATION OF SLOW WAVES IN AN AN79OTROPIC FERRITE

In this chapter the general probh m solved in Chapter I will be applied to

the study of wave propagation in an infinitely long anisotropic ferrite column

enclosed in a dielectric medium, which is again enclosed by a perfectly conducting

metallic cylindrical waveguide. All other conditions are similar to those described

in the previous chapters. In a ferrite medium with an axial static magnetic field,

anisotropy is exhibited by the following dyadic form [2] of p

1rr J ArO 0

IAs Or (1)

0 zz

where prr = (2a)

-- rO 1' of - --- (2b)
#r Or 1_02

1zz =  (2c)

M.._..2.oA (3a)

H

8 0 (3b)
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M = d.c. magnetization
0

H = d.c. magnetic intensity0

7 = gyromagnetic ratio for electron

It can be shown from (2) that sr and u' are related by the following relation

A-1 = aj' (4)

It will be assumed that the relative dielectric constant of the ferrite is I ,

a scalar quantity and the medium surrounding the ferrite has relative dielectric

constant C2 and relative permeability 1.

With the above assumptions, the magnetic fields, dispersion relations etc.

for this problem under any limiting conditions can be easily derived from the cor-

responding results given in Chapter I and Appendix C. Therefore, no detailed dis-

cussion will be given in this chapter.

It may be noted here that when a ferrite column or a plasma column is

situated in an unbounded dielectric medium, the boundary conditions for E and H

in both cases are identical, consequently any general expression for one situation

can be derived from the other, using the duality, provided Az is not replaced by

unity in any general expression.
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Expressions for Transverse Wave Numbers

If the values for iA and C given above are substituted in equations (34) and

(35) of Chapter I, one obtains the following expressions

v2

~1, 2 = V ± V2-u (5a)+

klel("2 - A'2) - A p r A k, (sr')-ac7 J
=r r

± e I ( -I')- + 4k2A'¢i /2 (5b)

k .AIf _,-A, +r) 2( r + 1) (6a)

Vr r r

i~2 Al
2r

U r [(kj Ar -2) -k4 A' 2" (6b)

For slow surface waves the following condition should be satisfied

02 > C 2

(7)

11 : is 6>0

I I

+ For ferrite problem the relation '1 '72 cannot be satisfied, since V2 - U) 0.
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t2 t2

Since Pz = 1, equations (5) show that V2 - U ) 0 and 11 and 12 are real

for real 1A, C I and C 2. Therefore, no instability phenomena appears in the case
I t

of a ferrite column. It may be noted that I I and 12 may assume purely imaginary

values as follows:

12

Case.! > >01
if U<0, V)0, or V(0 (Ba)

12 (12 < 0

t2

Case HI > 0
if U)0, and V)0 (8b)

13>072 > 0

v2

Casem M <
if U>0, and V(0 (80)

t2

12(0

The above information and the general results given in Chapter I and

Appendix C are sufficient to obtain any particular result for a ferrite column.

It may be noted that an electric current dipole source is more appropriate

for a ferrite problem than a magnetic current ring source. The field expressions

for an electric dipole source can be obtained easily by using the appropriate dyadic

Green's functions developed in Appendix B.
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IV CONCLUSIONS

In conclusion it may be mentioned that the work described here gives a

systematic rigorous approach of solving a source problem (not necessarily a ring

source) involving a homogeneous anisotropic cylindrical structure bounded by con-

ductors. Since the source free solutions are capable of representing all possible

modes for the structure of the problem, total fields due to any arbitrary source of

any kind (namely electric or magnetic current source) can be calculated by using

the appropriate dyadic Green's function. If there is more than one source, the total

fields can be obtained by using the superposition theorem, provided there are no

interactions among the individual sources. As the present analysis considers a

magnetic current ring source of arbitrary angular variation, the results can be used

for any given angular variation of the source.

From the general dispersion relation which is an eigenvalue equation and

independent of source, various interesting special cases, some of which are

already known, have been studied. The limiting proct :es used in obtaining the

dispersion relations for these special cases can also be used to obtain the expres-

sions for the fields in the corresponding situations.

The analysis for the plasma problem which is a special case of a general

anisotropic medium characterized by dyadics C and 1j, emphasizes the slow wave

propagation. Here the necessary conditions for slow wave propagation, including
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a number of special cases, have been obtained from the expressions for the trans-

verse wave numbers. These necessary conditions also give maximum passbands.

The sufficient conditions and hence the actual passbands can be obtained from the

solution of the dispersion relation. For slow wave propagation, some passbands

depend on the degree of slowness of the waves. The degree of slowness of the

waves depends con the relative dielectric constant, £ 2, of the medium surrounding

the plasma column, when all other parameters are kept constant. It has been

shown that the higher the value of C 2, the slower the phase velocity of the wave.

In other words, for a given C 2 there is a minimum phase velocity for which a cor-

responding slow-surface wave can propagate. Most of the energy of the slow waves

considered here is confined into the anisotropic plasma. In general, the lower the

phase velocity of the surface wave, the lower the amplitude. Not all the various

passbands for slow wave propagation in an anisotropic plasma column, mentioned

above, are known in the literature, at least to the best knowledge of the author.

Although these passbands could be obtained without any consideration of the pres-

ence of a source.

In the case of an unbounded homogeneous anisotropio medium where a TEM

wave can propagate, conditions of TEM wave propagation in the direction parallel

to or perpendicular to the static magnetic field are obtained from the general ex-

pressions of the transverse wave numbers. It is also shown that the condition of
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TEM wave propagation in the direction of the static magnetic field is equivalent to

the vanishing condition of the product of the transverse wave numbers. This also

establishes the fact that the consideration of the situation under which the product

of the transverse wave numbers vanishes is not justified in connection with the

wave propagation in a bounded medium which cannot support TE M waves. In other

words, if a bounded isotropic medium cannot support TEM waves, so also is the

case for a bounded anisotropic medium. For not being able to recognize the fact

that the condition of TEM wave propagation in the direction of the static magnetic

field, is equivalent to the zero-value of the product of the two transverse wave

numbers, some authors+ discussed the possibility of wave propagations in a

bounded anisotropic plasma column, under the situation for which the product of

the two transverse wave numbers vanishes.

+ Agdur, pages 183-185 of Ref. [6] and the authors of Ref. [4], page 497.
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APPENDIX A

MAXWELL'S EQUATIONS FOR ANISOTROPIC MEDIUM

The medium to be described here is characterized by a relative dielectric

(permittivity) tensor C and a relative permeability tensor A having the following

particular form

C 11 J 12 0

-jC C 0 (1)
S -I2 22

0 0 E33  C1 1  £22

AI 11 iI12 0

A - p A1 £2 0 (2)

o0 33 All = ,22

The above representations show, in both cases, that the transverse com-

ponents and longitudinal components of the tensors are uncoupled, where C 33 and

IJ3 3 correspond to the longitudinal, a preferred direction (say z-direction) compo-

nents of the tensors and A respectively. Therefore, C and p can be written
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in the following manner also

=c 6 t+ z 0z 0 £3 (3)
- tt -o-o 33

= /Ptt +Zo-Zo0 3 3  (4)

where 6tt andIAtt are tensors (transverse to z-direction) and z is a unit vector

in the z-direction.

The Maxwell's equations for anisotropic media with sources have the follow-

ing form (the time dependence being ejkt).

Vx E r) = - iw ) e(r) - I I ,Cr) (5)

Vx H( ) = jweor.) ' Er) + I_er ") (6)

" M(r) H(r) 0, for r _' (7)

V GC) K(r) = 0, for r r" (8)

where,

r = observation position vector (3-dimensional)

I (r') = magnetic current source at r -r

I Cr") = electric current source at r =r"
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In the following discussion the transverse vector and transverse operators (which

are designated by the subscript t) correspond to any plane transverse to the z-

direction, and the transverse plane may have any arbitrary cross section. That

is, the following derivations are suitable for any cylindrical geometry having the

z-direction as its axis.

First of all, it will be shown (see [i o] , [ll] , [12] , and [14] ) that

the longitudinal fields, Ez and Hz, can be expressed in terms of the transverse

fields, E t and H . Secondly, it will be demonstrated that the transverse fields

can also be expressed from the knowledge of the longitudinal fields. In the parti-

cular problem discussed in the tex, the latter method has been adopted for the

solutions of Maxwell's equations.

If equations (5) and (6) are multiplied by _1° in a scalar product fashion,

E and H can be expressed in the following wayz a

E = It" H xz (9)z jW 0 a 33 t 0 Jo606

H z z o33 Vt zo x Et - (10)

where I and I are the z-components of I and I respectively.ez maZ -e --m

Now taking the vector product of (5) and (6) with z, one obtains
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z x( x E) = -jwiuz x p H+I x z (11)
-o- "-m -o

z x( x H) = jw6z x , E+z x 1 (12)- 0- -o -0

Introducing

t -o 8IZ

E = E t+z E

and H =H+z H

-t -o z

one obtains

Sx ( x E) = VtE - E

and z x (Vx H) VtH- li.

Now equations (11) and (12) can be rewritten as

V E - = - JwjAoz x et H + It x z (13)t z az- 0-0 It-tt -0

and

V H-H =jwez xe E +z x It zaz -t J o x-t -t -O -e It (14)

where Im t and I et are transverse components of I and I respectively.

Again operating (14) by jwz ° x Lt and (13) by j- from the left one

obtains the following expressions
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8 -- L a (5I Et .t _t) + 7~~
az tz- - E-t = -Z xJ U H o. x z (15)

and jwjoz x (IA tHL)- jw oLz x At H

0- = t x(J z0 0xt0)t t

(16)

where k2 = #

Adding (15) and (16), one can show that

-a VtEz +x~ (a"V~z
TZ z +J -0~ t 8z -0oX-mt 11JAzx VH)+ -zxI +l lt - J/A12;o xIt ) let

= a 4E - j k a3_z x Et  (17)

where lt = transverse unit dyadic (18a)

a3 = oll"12+012'11 (18b)

a4 = k2 (' 1 lll + 12'A12)+ a (18o)

12.z x Jt) lt= -o x (ot" xlt) (18d)

Taking the vector product of (17) with zo one obtains the following independent

equation:
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x V. E - .)18z - - J t'tz - Imt+(JlIt + l l -o x i t) -et

= a4 O x E +Jk~a3E (19)

Eliminating z x Et from (17) and (19) by multiplying (17) by a4 from the

left and (19) by j k2a and then adding the results, Et can be expressed in terms of
3

E , H , I and I in the following way:
z-mIt -et

a 8
PlEt = [-a 4 i VtEz -5 w a' VtHz -z x[ika -VE + Jwoa'VtH

z 0 z2o - 3 8z t z 1mt Z
-[al lt + jaj_ ° x lt] * Iet

(20)

where the following relations have been used.

4 2 2
P 1 =k a3 -a 4  (21a)

aI  a 4 1 1 k2 3 = k1( 2 ;A 2 a)2+1 (21b)
1 -_ 12  11 a 2

2 2 2 2 a2

S a311 -412 0k1211 12)-012 &z2

and the identities
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Pt' VtHz = jul7tHz - J1121o x 7tHz (22a)

z x p 7H = llzo x VtH 12tz (22b)

By a similar method (or by duality of (20)), one can obtain the expressions for Ht

in terms of Hz, Ez, I mt and Iet in the following form:

% -1a4 - 7tH + weaPl = C'4 ~~~ oa2 VtEz]

8z tz o2 z

-Z x [ tk2 a3 "L tHz - "e aI7tEl

a 2+ [a~a X jmt

4- x t jk2 a3  -t 1 et (23)

where
2 12+) 02(2)

al k2 1 ( 12) "11 3z 2

a k ' 1 2 (6 1 1- 2 612 2(24b)
8z

Although the medium is anisotropic, if it is homogeneous (i.e., components

of and IA are not functions of position, although they may be piecewise con-

stants) and source free (i.e., I = 0 = I e), one can show that 8 and

95



THE UNIVERSITY OF MICHIGAN
4386-1-T

satisfy the following equations [using (20) and (23) in (9) and (10)]

2 + 33 at J"oAd33 e a1 (25)
t z Cll1 JA z GI11 3z

20 + " 33 a33 a (26)t z 1'A 1z 1 A11 3Z

where 6 and * are solutions of homogeneous (source-free) Maxwell'sZ Z

equations.

To obtain the above two expressions, it has been assumed that - Jg =

where 9 is the propagation wave number in the z-direction. This assumption is

permissible in the situations where both the 4 , Z and the geometry of the prob-

lem are independent of z, subject to another restriction, that tne transverse

anisotropy of f and 1 are not coupled to the longitudinal anisotropy of 6 and i

respectively.

To obtain solutions for 6 and fz, it is possible to have 4 th degree

equations in E and 26 from (25) and (26) by elimination. Since it is a tediousz z

task to solve such equations, one can alternatively find a function 0 which is a

linear combination of e and l , satisfying a two dimensional wave equation.

Let such a choice be

0 fl~+a.% (27)
Z 9 -
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Now multiplying (26) by Jot and then adding the result to (25), one obtains the

following relations

t + 11011 [a

+ ,e3aa[a- a = 0 (28)
l1p 1 '

The above equation can be represented as a two dimensional wave equation in 0

of the following form

2  + q,2 = 0 (29)

where

£33 1a,2 _P33 a poa33

'1 l [a,' - we_ A___]- (0Solving equation (30) for a, one obtains

3 3 a -M pal + [a; 3 3 2-a1 33)2  2

, o a (31)

2w

Therefore, the roots can also be expressed in the following form:
,2 333a-3 3a +a 3 3 -aI 3 3) 2 +4k2 e 3 32 33 1/2

11j.2~ -2 :

a, 2 6
1  2&A

(32)

The equation (32) can also be rewritten in the following form
,2

,11 , = v+ U (33)
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where

ale 3+aI 2 2+112

V = - (34a)

26 ~ ~ 1141 2~

U = G3 a 2_ 4 a2] '33g'33 121Ii (34b)

611 1k4 31 P1 = 1 2 (34b)

Relations Between Various Parameters Introduced in the Above Analysis

First of all, the following new parameters are introduoed and defined:

8= 1 a= 1/a11  (35a)

" 1 (35b)
JA I 11lI 11 211
- 1 2/, - 3 aa

R = a -w ja' (36a)4 2 o 2

T, = a- ,a a (37a)

T= woa2'a1 -a 4  (3T)
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It will be found convenient to carry out algebraic operations in the sequel

using the relations listed in the following table. In tabulating the following results,

no- attempt has been made to write them in such a way that any result is a conse-

quence of those preceding it.

1 S (38-1)

a 2  M

2112 11 '60a13 .a 31 (38-2)
1 A1 1 C 1 1  P11 a1

E 331 C 343c2 (38-3)

2 2

1 -a 2  - 1e2a3 13 3  
(38-4)

Po"33
ala2 = 633(38-5)Y 2 F o F3 3

e a' we ea da
8 33 1 -1,2 0o33 3 1 (38-6)

11

a - 111413 (38-7)
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a2 = weoea.33 (38-9)

l-a 2  .2 2(38--10)

2 2

a2  M
- 2 we2 ga (38-11)

,2 2 - e 3 a1 3

MS = n.33 33

12 2 2 (38-1)

611 a11

42 i ll

S- = 2 2 (38-13)

1 2

2 + a(38-1)

2 2

p1 = 4 a2 -o = I if (38-13)

a 11a Ali

P k4 3a32 - a 2 (38-17)
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T6 33 aA'- (38-18)

42 41 333

R' = woa2  -4a 4 =Ma 2'11 11 -*C8 3 a4e 33  (38-19)2'ea 3e33

T' we a 1 - Ya = 82 'll 11 - A,3a4'33  (38-20)
0 2 cl,3 33

e3a' - 611,ii 2 (38-21)

633al' - elllll' = 611l113 (38-22)

222

k2. 2
/3a, - &11 111 12 = a= - S 1 1 1 1  (38-24)

a,3 - 211 - al/31 (38-25)

1 = a4,11 -ka3 12  (38-26)

*2a 3 = a161 - a' (38-27)3 2 1 '112

a1 = a4/11 - k 8a312 (38-28)
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a2'= k2 a3 11 - a4"12  (38-29)

a2 = k2a3 -1 1 2 (38-30)

kaa '-a a 4 ="llPl (38-31)

a - aiaI fi111'12 (38-32)

k2aa -A a, fi 1 p, (38-33)

k2 'd 2 -aat = pM P (38-34)
3 1 1 1 11 11

a1 = '1 .1-,12) - 211(8-35)
2 2 2 2

a1 k p11(m1 1 - 12) - jea11 (38-35)

2  2 2 e (38-37)

at k2 6( 2 2 2 (38-38)
2 12v.ll - ' 12  12

a3 =6 1 6 (38-39)

a4  k2(Al6l1 +5A12612) 2 (38-40)
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It may be noted that all of the analyses and results obtained in this Appendix

are based on the assumption that the problem has a cylindrical geomet,y with axis

in the z-direction and having an arbitrary cross section which is independent of the

coordinate z.

Propagation of TEM Waves in an Unbounded Homogeneous Anisotropic Medium

Since the foregoing analysis does not include any particular boundary, it is

valid for an unbounded medium also. Hence, it is possible to obtain conditions for

TEM wave propagation in a direction parallel or perpendicular to the z-axis. It

may be mentioned here that a plasma and a ferrite with a static uniform magnetic

field in the z-direction will have tensor permittivity and tensor permeability

respectively. The forms of these tensors are given in equations (1) and (2). As

mentioned earlier, here also the medium considered will have both e and u as

tensors with constant elements.

TEM Wave Parallel to the Magnetic Field

For a TEM wave in the z-direction both E = 0 and H = 0. If the source
z z

terms in equations (20) and (23) are equated to zero, non-vanishhg values of E

and H are possible if and only if PI= 0, when E = 0 = H , provided the elements

11' 633' P11 and A3 3 are finite and non-zero. The condition pi= 0, gives two

TEM waves propagating in the z-direction. These two waves are characterized by
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the following expression of the propagation wave number 9 in the z-direction

x2k+2  1 + ) 12 W -'U12 (39)

Since p is proportional to ) 2  °2, the condition 4i 2 12 = 0, is equivalent to

TEM wave propagation in the z-direction, provided the diagonal elements of 4

and m are finite and non-zero.

TEM Wave in the Direction Perpendicular to the Static Magnetic Field

The conditions for a TEM wave propagating in the direction perpendicular

(I. e., perpendicular to the z-axis) to the static magnetic field can be obtained upon

substitution of = 0 (i. e., -L = 0) in the expression (32). This substitution gives
8z

two propagation wave numbers 7 1)2 which represent two TEM waves in the trans-

verse plane of the z-axis

12 e
J1  33 2 2 (40)

k 2 JA (111- 124

and

1)2 M33 2 2 (40b)

- 1-1 (611 612

The results obtained in (39) and (40) agree with those obtained by Van Trier
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[I] by an entirely different approach.

When p1= 0, a study of the expressions (33) and (34) shows that '= 0,

provided the diagonal components of f and u are finite and non-zero. It can

be shown also that such TEM modes in an unbounded homogeneous anisotropio

medium do Dot vary in the transverse plane, but in a coaxial waveguide TEM waves

behave as 1/r in the transverse plane. The above statement follows from the fact

that for a TE M wave the transversely varying part of the transverse fields can be

derived from - Vt(f), where 0 (p) is a scalar potential dependent on the transverse

coordinate 2.

The two waves given by (39) are known as ordinary and extraordinary waves

in the literatures of the ionospheric wave propagation. The permeability of the

Ionosphere is a scalar quantity and equal to that of free space. These two equations

also explain the phenomena known as Faraday Rotation. The two waves represented

by (40a) and (40b) can be said to explain [I the phenomena known as magnetic

and electric Cotton-Mouten effect.
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APPENDIX B

CONSTRUCTION OF DYADIC GREEN'S FUNCTIONS

Although a construction of Dyadic Green's functions from the source-free

solutions of Maxwell's equations for inhomogeneous anisotropic non-dissipative

media in a uniform waveguide of arbitrary cross section bounded by a perfect con-

ductor, has been discussed in [13] , they will be also briefly presented here for

the sake of completeness of this work. In this appendix the corresponding results

for anisotropic dissipative medium will also be obtained.

The most important technique involved in the construction of dyadic Green's

functions is the determination of an appropriate orthogonality condition among the

source-free solutions (i. e., eigenfunctions) of Maxwell 's equations. Methods of

finding such orthogonality conditions have been discussed elaborately by the authors

in [9], under different situations.

Here an indirect method will be presented for the construction of dyadic

Green's functions [12] . In this method it will be assumed that the sources are

due to some discontinuities, which causes discontinuities in the fields also.

Dyadic Green's functions Z(, r')., T:em( r'), (. r') and T (r r')
em -e

are defined by the following expressions:

Er) = -C ,ZEr)r'VI Cr')dV' -U T (r~, r') ' Lr')dV'(1
ae JJJ em - -M

V V
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HIr) = 5 V (.r') -I (r') dV' - ~$T (r, 0' Ir') dV' (2)
V

Where the E Cr), HLr), 4, I-1 have the same significance as given by the

Maxwell's equations (5) to (8) of Appendix A. Instead of volume currents, if I-e

and I represent surface currents, the volume integrals in (1) and (2) should be"-m

replaced by surface integrals (over the regions of surface currents).

In the following are given the physical meanings of dyadic Green's functions:

- Z(, r') u = electric field at r due to a point electric current source at
r, directed along the unit vector u.

- T (G r') v = electric field at r due to a point magnetic current
source at r', directed along the unit vector v.

- YCr, r') * = magnetic field at r due to a point magnetic current source
at r' directed along the unit vector v.

- Tme magnetic field at r due to a point electric current source
at r' directed along the unit vector u.

In the above statements the point source means a source which has spatial variation

as a Dirac delta function & (± - r').

Let (r) and 11r) be the solutions of the homogeneous (source-free)

Maxwell's equations (3)

( & r)=-jwm y(p) ' *(r) (3a)
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x 9i.r) = jw0oc(p) " Cr) (3b)

where ~e~) and 6(p) are functions of transverse coordinate p only.

Since under appropriate boundary conditions, (r) and f Cr) form a

complete orthogonal set, the total fields EC) and H(r) due to any arbitrary source

can be expressed as a superposition of 6 Cr) and 0(r) in the following way:

E r) = A (r) (4a)
a

and

H ~ A %6 C ~r) (4b)

where A is the coefficient of expansion corresponding to a-th-mode (eigenvalue).

Reciprocity Relations for Homogeneous Maxwell's Equations

To establish Lorentz's reciprocity relation and hence an orthogonality

condition it is desirable to consider another set of Maxwell's equations. This nw

set of equations is sonetinv s called the Adjoint-Maxwell's equations [9] After

taking complex-conjugates of these so-called adjoint equations, the resulting

Maxwell's equations have the following forms:

SoJ( +* (5a)
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+ +

where y + 6 = adjoint of Ji, and !L respectively

= complex conjugate of the transpose of u and 6 respectively.

p = p =transpose of P

JAI 12 'A2 0 (6)

00 ' 3 3

4-*-

and = = transpose ofu

-j II -12 0

j a 12 e 22 0 (7)

0 0 633

Although the authors in [9] have used the symbols *3 for

* +

and fo an + rnpso

an fr _3, in general 2P 03ad have no simple relations with

the solutions of equations (3a) and (3b). Thus, to avoid confusion, the symbols
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and have been used here. Here and only mean the solu-

tions of (5a) and (5b), subject to some appropriate boundary conditions.

Now multiplying (3a) by and (3b) by and (5a) by ___ and (5b) by

6_ in a scalar product fashion from the left and then subtracting, one can show

that

[vI ~ x 0] (8)

Since

_ (9a)

and*

Let + z where z is the unit vector in the z-dfrection.

Now using 8zL jo -a =I - a

and
8 8

9z~ = =o 8

equation (8) can be rewritten in the following way

x j('-~ [& * z- +

(10)

____ ____ ____ ___ ____ ____ ___ 110 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



THE UNIVERSITY OF MICHIGAN
4386-1-T

Now integrating over the cross-section of the waveguide one obtains (using the two

dimensional divergence theorem)

x + ,, x do = J(X,- x z . +  ,. x d
.. a 0. .-0 -01

s S

where v is a unit outward normal vector on the boundary curve s of the waveguide

cross section S.

The left-hand side of the above expression vanishes on the boundary of a

perfect conductor

* . the orthogonality relation becomes

• dS = 2N & (11)

-0 z + Sta aZ ap3

where N is a normalization constant and
a

& =1, for' =
a13 a $

0, for it

When the waveguide has a reflection symmetry, i. e., when the properties of the

waveguide are independent of the coordinate z, the orthogonality relation can be

rewritten as

____________________________i 111 ____________________
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x zo dS = N S = z x dS (12)

S S

or
/i

to x z dS = N 5 =S " z x todS (13)

S S

where the suffix t represents the transverse components of the fields.

Construction of Dyadic Green's Functions (see [1I] and [12] )

Knowing the total fields E(r') and H(r') which one may consider are due to

discontinuity at some cross section S of the waveguide, one can write, using

equation (4)

go( )x z E r 1) = r 1) x z A

and

z x .Cr)' ' z x ar')A

Integrating the sum of the above two equations over the cross section at Sz

and using (11), one obtains the value of the coefficient A as

_[,)'_ ,%_(r,) x z + H(r,) ' z x , (ra CS'
-VT a -o 0 a

A Z (14)
a 2N
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Therefore, the total electric field at any point r due to E~rI) and H~r') is given by

SdS'FEr') (L r') x z 0+ H(r') z 0x6 (r' 1  Cr)

E~r) ~ A_(r)2N

which can also be written

a- -a2 z x H~r') dS1

2Na J 0
z

Sicez 1C')an Cr' a reren souce due tod1cntnite
2N -0

Sicez0 Hr)z n xH(r')I ( repeand sorces due (r')cntnite

-z 0- ~r et- -o an-~l mt-r

Alternatively one can consider the discontinuities in z 0x 11r') and ECr) x z0

at r' are due to actual sources I'et(r ) and I Cr' ) respectively. Now with the

above assumption if one compares equation (15) with equation (1), one finds

.zr (r-,2 'N (16a)
ef a
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T em(r, r') = I 2N (16b)

a a

Similarly if one expresses the total magnetic field as H(r) = A* a( ) and

uses equation (14), following the above procedure, it can be shown that

(-r, 2N (17a)
aa

orr

Tme _L' 2N- (2)
a a

Special Cases

It has been pointed out before that in general there are no simple relations

between and e and -_ and -, but in some special cases these
aa aa

relations simplify. For example, in non-dissipative anisotropic media = 6

and i + = m, i.e., 6 andy are hermitean (self-adjoint) dyadics. In this case

d" a of , is real.

Therefore, for non-dissipative medium, the dyadic Green's functions can be

expressed in the following way

z 2N (18a)
a a
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-em ( 2N (18b)
a a

2N 118c)
a a

T me( r') = a 2N a (18d)

a a

Another kind of orthogonality relation and hence dyadic Green's function can

be constructed in the following way (see [9] ). These results are particularly

suitable for dissipative medium.

In this method the following replacement is made

4. =- p = transpose of p (19a)

G 4 6 = transpose of E (19b)

a a a(19)

a(19d)
a a

(19e)

Due to the transformations given in (19) and the Maxwell's equations (3) and

(5), the following simple relations can be established
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a a 12' 2r)=+ -e 12 ' -'012' )(2a

and

a(V ' P2E) -62 r'l'-) (20b,)

Therefore, for the dissipative - anisotropic medium the orthogonality relation and

dyadic Green's functions can be expressed in the following way

l - z x 6]d = 2Ns (21)

If there is reflection symmetry in the waveguide then

I_% x zo dS = N _ - I ° x dS (22)

a a a

6,(r- *,, 612 'A2 a 2 1 (23a)

b-em _2N

a a

TY(,r') f.A, 0 2,'ul2 W, a' 612" 12 ) (23b)

2N

a a

la ____#_,,_612__'A12)__a_-_12_1 (23)- ~2N(20
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T Ur r 2- " 2N" *' 12' 12  (23d)
a 2Na

For dissipative medium e and N are complex.
a a
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can exist independently. This approximation is also valid when (ka) < 1, where

2a is the diameter of the anisotropic column.

For static approximations it is easy to show that

Ea'1  EJz

1 t12  c -

r l'r  Ir

j za, 1Az ;e

1 r r /r

S 0

M , - ( i2z - ' )

(2)

Now using these relations and the assumption k$ < < 1, it can be shown from the

dispersion relation (1) that for the H-type mode the right-hand side of the expres-

sion (1) vanishes and for the E-type mode the denominator of the left-hand side of

(1) vanishes. For a magnetic current ring source an E-type mode will be excited

in this static-limit situation. Whereas for an electric dipole source an H-type mode

can be excited in the static limit. It is of practical interest to consider the E-type

modes in a plasma and the H-type modes in a ferrite. The following dispersion

relations for these two limiting cases can be expressed in the following way:
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J ~ ~ ~ ~ 1 1r'a i (IXa)K IDl, - Ib)K' Waj
J(Wlja) - ne' I (Ya 2 Ihj Vb) (Va - 1~~ )] (3)+

for E-type modes

and

J1 (V'2a) [i'(Ieb)K' ga) - I'((a)K'9ebJ

(a J) J(n'2a) -w'=(a [I' (Db)K (Dea) - I (~a)K'V(Ab)] ()

for H-type modes

When the anisotropic medium completely fills the waveguide, i. e., when

a = b, the above two relations reduce to the following:

J n671a) 0 , f r n j for E-type modes (5)
and for n = 0 , J 16 1 a) = 0 J

It should be noted also that in this case a change in sign of n does not effect any

result.
J? (n'2a) = ]

r~a) J n(rn' 2a) ap
ni for H-type modes (6)

and for n = 0, J1(77' 2a) = 0 J
When the radius of the waveguide b -tin oD, the above equations (3) and (4)

reduce to the following simple forms:

+Thse results agree with those obtained by Trivelpiece [8] except for a change
in sign in the term n'w' of equation (4).
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For n = 0, the above relation becomes

klVA0 2a! ,C2A 12J 671a)Jl67a)-ayj o1 a)+J?(nTaj] Ga o

ryr & z n/ (a 2 J, (17 11a) J("Tal'2 a IJ a)J( a + 3 C o(a)Ja(nj a)]

= r~zG(a42JO( ta)Ji( ta) V1 +S]-anS(J2( 'a)+Jo(ija))) -2pnt 3S(a)J(r/a)

(10)

For n = 0, the dispersion relations (551) and (561) can also be derived from the

relation (1).

It should be mentioned here that all the following dispersion relations for

various special cases can be derived from any of the general relations (551), (561),

and (1) of this Appendix. The purpose of writing these various forms of the general

dispersion relation is that it is found more convenient to use one particular form

rather than another for some special cases.

When the anisotropic medium completely fills the w -cguide (i. e., when

a = b), the corresponding dispersion relation (without using Lay approximation)

becomes (since GO) = Cn(b) 2 r () 0 = Sn(b), at a = b):

2 Jn(r/' 2aLj [Jn(nf'la)l

ac IrMT1J?1zC7 J 1 11a 2 ne a' 2 vr-n 1
2), for n #0
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and M -J(?a)(~a), for n1 = 0 (12)

If one analyzes equations (341) and (351) or equation (32a) of Appendix A,

it is easy to show that in the limit c I = jp a -+ 0

fil cz al Cz a
C r/Ar E

7122-pza 1  uza

S z4

M = j~ 2 (~2 - lt), Ea Z% 7,12 er =E

- 0. Ea C1'1 
2 

= EM
a 3  z% r r

A E'l 71 
2 - al'c Er a z _g.~2 CZ

a3  r

(13)

Now if one divides the numerators of both sides of (541) by a3 and uses

relations (13), the dispersion relation can be shown to have the following form,

after rearranging terms:
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2
e T 11J'(W'a) C2aC (a) ;* r' 2 J'(rl'2 a) A2a S afl Fn~a-1
Ir 4C + 1U 4V 4 + 2n?
Li nv7'a) J (a) [ J(Wa G () L ka, j

(14)

For an isotropic medium, the dispersion relation can be obtained from (14)

letting n', 2 ='T 12 =a 4 = cr-X2 ,and c = C,ul MZ.

For axially symmetric fields (i.e., when the ring source is of constant

strength, a 0), n =0, and one obtains from equation (14) the following86

dispersion relations

rr 'J 1i'1a) CA40(a) , for E-type mode ( a

and

PrM( 2a) G (a) . for H-type mode (I 5b)
1 0 G0(a

The relations (15Sa) and (1 5b) can also be obtained from (551) with appropriate

limiting procedures.

It should be noted here that for axially symmetric fields and el = 0 = JI

E-type modes and H-type modes can exist separately. But in the present problem

where the source is a magnetic current ring source, only E-type modes will be

excited for el = 0 = ;A'. Further it may be stated that even in an Isotropic medium
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(i.e., c'=0=' and er = 6z and ur = Az) if To j 0, E-type and H-type modes

cannot exist independently.

If nAO, buta=b and e' =0=p', it can be shown either from (11) or from

(14) that the dispersion relations become

J ( 'ia) = 0 for E-type modes (16a)n

and

Jn(1'2a) = 0 , for H-type modes (16b)

It is now trivial to see that for n = 0, a = b and ' 0 '= , one obtains the

folowing dispersion relations

=(ntxa) 0 * for E-type modes (17a)

J =('2a) 0 , for H-type modes (17b)

Relations (16) and (17) are valid for isotropic media as well as diagonally

anisotropic media. However, in our present problem, we consider only (16a) and

(17a), restricting our consideration to E-type modes (due to choice of the source).

+When an infinite column of an anisotropic medium is placed in another

unbounded isotropic medium, the corresponding dispersion relation for surface

+It should be noted, however, that to obtain radiated fields in the present situation,

this limiting process (namely b -+ wo) is not valid.
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wave s can be obtained either from (53) or from (54) with b --. co. To study sur-

face wave propagation (which is also slow wave), for which X/k > 1, one can

show that 1 is purely imaginary. So putting yj = -j £ , 8> 0, one obtains

vn(a) = -(2/ ).[In(6b)Kn(6a) - I(a)K(6b) (18a)

S (a) = -(2/r). [I'(6a)KZ(9b) - In(6b)K(6 a)] (18b)

Ca (a) = J2/z).1n(J a)K (6b) - I (A b)Kn(. a)] (18c)
n I.. n1n n

Gn(a) =(j2/r) n ( 6b)Kn(Sa)- In(Sa)KZ (Sb)- (18d)

n n2w [ n' n

for convenience let

n(r) = In (b)Kn (r) - I n(6r)Kn (b) (19a)

S( = In'(6r)KI(6b)- IP(6b)K'(Ar) (19b)
n n n n n

C (r) = In( r)K ( b) - In(b b)Ki(J r) (190)
n n n n n

G(r) = In(Sb)K (Sr)- In(Sr)Kn(Ab) (19d)

Also it is easy to show that (if n ( 6 b, 6 may be finite or very large),

K(6 a)e 6b

n f asb- co (20)
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When n = 0, the above relation becomes

MfSIAK(Aa)Ji (n'2a)+y'AKi( Aa)J&,'2 ~a)I 4 EK(6a)J (?i'2a)+le 2T'K(6a)J0~'a

(22a)

The equation (22a) may also be written in the following form:

K2 (6a)jJ1 ja)J1&1 '2a) + A2  -K?(6a)J (n'ia)J 1a

z A K (6a)Kj(ba)jjijja)J1 (n~a)+ [ ]K(6)K(a)J (?a)J&ija)-O

(22b)

When the anisotropic medium completely fills the waveguide in such a way that

a = b >)> 1, the corresponding dispersion relation can be obtained from (11) letting

a > > 1. It should be noted here that if a> > 1 in equations (2 1) where the limit

b -+jo has been taken the result will be different from that obtained from (11) with

a > >l. The reason is that if a >> 1 in (11), it also means a =b >> 1, but if

a'>> 1 in (21), it means that b >> 1, a))> 1, yet a j b. The difference between

the above two results can be shown rather easily for n = 0 a's follows: either from

(11) or (12) one obtains the following dispersion relation

+ hna = b --t oD, there is no dispersion due to the boundary.
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772s tan(t' 2a - v/4)

-- 5M = tan(f 1 a - v/4) , as a = b >> 1 (23)

and from (22a) one obtains

S lf&Sin(a-r/4)+,T1t/hcos(nta-wr/4)} Se Sln(ir a-ir/4)+gFe/vtoou(la-w/4)

MpzSin(rIa-r/4)+ ticos(ra-w /4)} = 6eSln(a-r/4)4ez2t/cos(nia-r/4)

for a >)1, b >)1, but a J b. (24)

For ef = 0 = A' = a3, the dispersion relation (21) becomes

S6niJ'(n Ia) c '6'~b 1A A7J' (n~a) paKU(a~l n( 2
I~6~ + W W ~ ~ n 4 n = 4 ]

J Ln"'a) K (ha) J L a ka~ (25)

Equation (25) can also be obtained from (14) directly using n =-J , and letting

b --+ oD.

For n = 0, the E-type and H-type modes separate and one obtains the fol-

lowing two relations from (25)

Cr rl'IJtlr?'Ia) esa 4K1(6a)
rJj( 1 a) (6a) for E-type modes (26a)Jo(rn'ta) Ko0(6a)

and

MrT2 41tl 61(2a) Iga4 K1 (6 a)

0 (' 2a) K 0(S a) for H-type modes (26b)

It should be noted here that for isotropic media, n1', and n' in (25) and (26) are
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given by

T1 2 77 =7 2 % = hir -Awherecr= z-P =Az

For el = 0 =M', n =0 and also a =b >>i, it can be shown either from (16) or

from (23) that the dispersion relation reduces to

cos(&n1 a - r/4) = 0, for E-type modes, a >> 1 (27a)

and
sinfri'2 a - r /4) = 0, for H-type modes, a)>> 1 (27b)

Now it is also natural to discuss the dispersion relation for a «1 and b finite.

To do this the following approximations will be used (see [17]:

JnWx) , for 04x 4<l (28a)

N0(x) -(2/u0log 2ax) for 0-(xC< 1 (28b)

where a = 1. 781072

(n-i)( !( n j 0, 0 < x -/1 (28c)n

K x) -log(ax). e 0x 4< (28d)

n In nXi)! n>1, 04x/.41 (28f)
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N'(x) n , for n.>I, 04x 4,c1 (28g)

n! 2n - I

K'(x for n) 1, 0 4 x 1l (28h)n n+l
'X

x

It will be assumed that la 4C, ',a 1(, 'a<<1, Inaddition to a < 1.

Then, one obtains the following expressions:

Gn(a) ()nNn() + (n - 1)W (_jn(b)
2 n! 2 17a

4(a) - 67b)!(j)f () - (a N (17b)
2 n

S(a) n ! 2n  J,(6b)- n-i N'(7b)S (11a)n+1 n 2n(n- 1) !

la)n n - 1

( !"2 Jnb)- N(lrb) for n 1a v(na)n +  2 n(n - 1)

(29)

2
G (a) -- N1 &j~b) + - Jlnb log~

02 2
o(a ) J J(rib) log (-a) -No(ijb)

2 J(Y)-b)
o0 r rib 2 2 Nib

C( No(17b) for n =00(a 0 2(b+~ 0&b

(30)
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Thus, ~ ~ ~ ~ a~ 1oa-l ti<cl~-and 'a<<l., various forms of the

dispersion relation can be obtained merely by substituting these expressions in (541),

(551) etc.
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APPENDIX D

A NUMERICAL EXAMPLE

In this appendix, results of numerical calculations will be presented for

a special case of the physical situation described in (14a) of Chapter 11.

A normalized value of the electric field, E , will be computed as a function
DZ

of r for the smallest eigenvalue, rj's, where we are treating the case
a

T71 > 0

?22 ( 0 (la)

8 0

1-0)

1 - ,> 0

l -y > 0 (lb)

2 > x+y >

with the specific parameter choices

ka > 1o2

C2 = 6 (which represents a glass tube) (2)

*/k= = 25> V )
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aS 8 = a2,2 EkJa 6

a = 103(2)

c = b = 2 x10-3

First the lowest elgenvalue must be determined. To do this, first some

necessary constants must be computed as follows:

1 c=I(6 b)K(6 a) -1(6a) K(6b) > 0
I 0 0 0 0

Go =c 2 = Ij )K0 ($)+10 (7a ,( )--0

S = c= I,(6b) K(6a)+-I (&a) K, (6b) '
0 3c

Co = c4 = 1 (Ba) K 0(Sb) + 1(6 b) K, (&a) ~'0

ni (y) will then be computed from the following expression

Ti' 1
2  1 2(l -y) fj1- X)+ y} ~iYY( (4a)

-2 2(x+y-l) Lx fy

where = -,(4b)

and f(y) 2 & 2 x+4 92x(l-Y), (4c)

For a range of values of y (where 1 - x < y -c 1).

Starting with y corresponding to the smallest value of vn'l obtained from

(4a), the function G(y' , y) given below will be computed for neighboring y until
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a change in sign is obtained. [i.e., we want to find lowest value of n'1/k which

satisfies G( 171  1 y) = 0]

[(1-y)c l c2J 30a)I
1(pa) "sc3 c4 J (17a)I(pa)]

G(rfl y) = (2 +7'1 ) 77iP + 02sJ

1J (nlia) I,(pa) s]

+ [E Mc 4 c 2  (1 - Y)SClC 3

1 0I° (P a )J,(n',a )

[(1 - y) M cl3 2 S c4c2  6 10

(5)

where p2(y) t 2 y f(y) ti'tI(y)
2 - 2 ' - k2 (6a)

k k X+y- k

M k [Iy)1 x x+ - + 9] + p2  (6b)

S = M-(p 2 + 7'7 )

It should be noted that neither , = 0, nor p = 0, can be a solution to (5).

When the lowest eigenvalue i7'1 is determined, I Ez I will be calculated as

a function of r from the following expression where all relevant parameters are

evaluated at the previously determined lowest n7'.

c E"I we2C 1 SI°(pr) - M (J (iftr)

m r 6 2 (pS +11112) • for 0, r&a (7a)
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2we c2 c fI j, (r)
0
2 8, for a 1 r b (7b)

521

where

9= p [6c2 Ji(67u1a) + ilc3071 (8a)
17P1 [c 2 Ii(pa) + PC3 o(Pa)

= E' [8 (pla) - MJ (1'1 9](8b92 =  02 2) j(8b)
2c l(P 2 + IY2

1 32c 2  2

LC~~r~t 1
2  M~RP~A~wP'~ (80)

F2 = - jL c c'lP17 [WM p91k[ M. p 'k  R0  (8)
rz r

F3 = -JLc rEEz I RI k gel - , (8e)

2 2 Er012 *IF4 = - LErez p 1  T'k3c'I+cr T ,1 S3, (8f)
4 r 2 L2

F = k , 9 ~ 22{(Sb) + -
2 (S b)j + 2 C2f K?,(6b)l )

F6 = 21o Xo(6 b JI (bj b) + -  Ko(lb) -j(ob)+l)(J
6 2 O 1,6 00 3 W4S (8h)

F7 = F6 (8)
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F Wk [CoCZg2 i (6b) + p. g I(6b)] (8j)

F 62 0 3

ITwe 0 e'kg L o 1n~a -91(pa)](k
3 2c r c2(p 2+771,2) 0

c2ec2(p2+

r2p(a z (ga)'k

R= k (9b)

0 Z
2 2 4CMez'(r  ,2]

R r z (9)

z
k 4 c0 - k2c r S(cr - 92)Cz~t2(9d)

0 z
k 4 CCIrs - k2 Cz(Cr ,2

T' c z (9e)0z

r) = I(b) Ko(6 r) -I(Sr) K(6b), 9

0 k (9g)
r

-9

o =3w (in M. K.S. unit) (9h)

o= 4w x 10-7 (in M. K.S. unit) (9)
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= i -y, (9j)Z

x+y-1 (9k)
r x-1 '

'= '-- (91)x-1a' 2 2
I1 - J1a) - - Jo(n'a)Jl(n'ta) + (ni1 a] (lOa)

.a2 0a- a

12 - ja .FPji(rlja)li(pa) + n1' I1(pa)j 2(nla) 1 (lOb)
12 = 13 (p2 + 7t 2 )

2 1 I(Pa) Ii(p.) )
4 2 a(pa)+ 0 (I2(pa (10c)'4 2 Ppa 0

2 21 (6b) I(6b)

I b (6b)+ 0b -

(lOd)

a2  (a 21 (6a) I(Sa) o16a
2 6a -

f 2 1- (Sb)K1(Sb)-11(Sb)K (6b)16 I7 JI5 + (6 L(b)K1(6b) + I°(6b)K (bb) + 0 0-1

a - 2 ( (6 II (sa)K1 (Sa) - 11(La)K (La)
a0 0 a(oI I (K a
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2b2  2K (6b)K1 ($ b) 2
28 [K I5 " K(6b)_ - K (8 b

-2a 2 (6) 2K°0(6 a)Zl (6a) K K2 (6s])- 2K ()a-K1(a a o

0 ~ K(6a](lOt)

Discussion of the Computation Procedure and Results

Starting with y values near 1.0, it is found that i' increases very rapidly

as 1 - y increases. An analysis of the expression for G shows that the first zero

of G will occur shortly after J (r 11a) changes sign, i.e., when i?'i a is slightly

greater than 2.4, i.e., if, > 2.4 x 103 (with a = 10-3 ). With the given parameters

it is found y is very near 1.0.

After finding n',, and the corresponding x and y, for which G = 0, various

expressions in equations (8), (9) and (10) have been computed. Since the parameters

6 a, 6 b are large in this calculation, the asymptotic formulas for evaluating

I(z), 11(z), Ko(z) and K1(z) have been used (where z stands for either 6 a or 6 b).

With the parameter used, K (Sb) and K1(Sb) are very small and nearly all terms

involving them were insignificant. However, the form used included all operations

and can be used, without alteration, for any set of parameters.

It should be noted that, although some of the F and I, in (8) and (10)

are real, some pure imaginary, and some complex, all imaginary terms in tm

summation cancel out, and hence F It is real. This fact is in agree-
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ment with the theory as discussed in connection with the equations (82) - (84) of

Chapter I, where it is stated that the power-flow in a non-dissipative medium is

real.

Computation has been completed for the following cases:

Case I) x = 0.7 andx = 0.5, withka = 2x102 and / = 2. 5(or =6.25)

CaseH) x = 0.7andx = 0.5, with ka = 102,2 = 6.000025

2Case m) x = 0.7 andx = 0.5, with ka = 7, 2 = 6.005102041

The following pages show tables of values of many of the variables involved,
C I1 o E1 I

and the values of - , for0' a <b. Also graphs of - in the range

0 < r/a < 1.0 corresponding to the above cases have been shown. For the range

r 2 a. the values of - are too small to show on the graph.

The behavior of all the graphs plotted here is more or less the same. It is

the nature of the slow waves. The higher the value of 3 ff= - - -  the slower thek

wave. Moreover, the higher the value of c2 , there is a minhnum value of 3, for

which a corresponding slow-surface wave can propagate. Since in the above com-

uptation C2 is chosen to be 6, the minimum value of 3 is greater than 2.45. On

the other hand a larger value of c2 will permit a lesser slow wave to propagate.

Although the above statements show that the degree of slowness of the surface

waves is markedly influenced by the value of e2 and hence (3, the strength or

amplitude, however, of these waves depends on various other parameters. For
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2
tO

example, in the Cases I and HI the graphs show that higher the value of x =

the lower the amplitudes of m On the other hand, in the Case U the

graphs show that the higher the value of x, the larger the amplitudes of E
Im

although the values of 0 in all of the above cases are of the same order. Moreover,

the graphs of the Case II show that the amplitudes of is about 10299
m

times higher than that of the Case I and is about 10 times higher than that of the

Case I. Therefore, the above discussions of the numerical results suggest that

for any practical purposes the results of Case II will be of greater significance.

All the graphs plotted here change monotomically, because of the higher

value of 0. On the other hand, if 0 is small (and hence the smaller value of the

parameters (pa), 6 a etc.), it is expected that there will be a few oscillations of

SmZ1 in the range 0 < r j a. In support of this statement reference may be made

elsewhere (7)

Finally, it should be noted here that is is the value of 6 a and S b which

played the significant role in producing tremendous difference of amplitudes of

-L-& in Case I and either Case II or Case I. In the former case, the valuem

of 6 is much higher than that of either of the later cases.
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CASE I

Summary of Values for ak - 2x10
2 . 2.5 Values of CIE .!

m

x .7 .5 r/a For x-.7 For x:.5

y .9999731125 .9999849842 0 8. 7559211 x 10-299 1. 1286428 x 10-98

f 3.675064017 2.625035752 .1 8.6297345 x 10-299 1. 1123792 x 10-296

re1  2.405305063 x 103 2.405160330 x 103 .2 8.2568279 x 10-2V- 1. 0642912 x 10-298
P 4.582578887 x 105 4.582578191 x 105 .3 7.6526916 x 10-299 9.8645248 x 10-299

M 2.100042490 x 1011 2.100045835 x 1011 .4 6. 8438881 x 10299 8.8220667 x 10 - 2 9 7

8 -1.8291 x 106 -1. 4301 x 106 .5 5. 848043 x 10-299 7.5601706 x 10-299
91 9. 062918575 x 10-197 9. 064671742 x 10-197 .6 4. 7570032 x 10-299 6. 1323402 x 10- 2 99

92 1. 574477758 x 10 - 4 5  8.863836389 x 10 - 4 6  .7 3.5670448 x 10-299 4.5985988 x 10 - 2 9 9

Cr  -2. 333243708 - .9999899684 .8 2.3442840 x 10- 2 9 3.0225528 x 10-299
c -2.788791769 -1.414192327 .9 1. 1385489 x 10 - 2 9 9 1. 4684199 x 10-299

R -4.228947963 x 1024 -5.405747531 x 1024 1.0 8. 3359942 x 10 - 3 0 6.0491791 x 10-303
T -4.524434966 x 10 1 9 -4. 107746983 x 1019 1.1 3.6088193 x 10 3 0 " 2.6188111 x 10 - 3 0 7

R' -9.111703604 x 1021 -6.992432040 x 1021 1.2 1.5687972 x 10- 3 1 1 1. 1384287 x 10-311
Tv 2.510277019 x 1017 1. 926178097 x 1017 1.3 6. 843 557 x 10-316 4.9660890 x 10-316

(3 -1. 187508895 x 10 - 4 7  -7.84783807 x 10-48 1.4 2. 9941111 x 10-320 2.1727359 x 10-320
L -1.470483272 x 10-58 -6. 895189885 x 10"58 1.5 1. 3133097 x 10-324 9.5302916 x 10-325

F1  3.396169068 x 10-8 1.89654271 x 10-8 1.6 5.7733840 x 10-329 4.1895703 x 10-329

F2  5.107586708J x 10-207 2. 230758065J x 10-207 1.7 2.5429686 x 10- 3 3 3 1.8453555 x 10- 3 3 3

F3  -8. 171358617J x 10-208 -3.568967890J x 10-208 1.8 1.1220024 x 10- 3 3 7 8. 1421868 x 10-8 38

F4  2.429623822 x 10-405  1.061285373 x 10-405 1.9 4.9582959 x 10-342 3.5980655 x 10 - 3 42

11 1.347570276 x 10 - 7  1. 347570418 x 10- 7  2.0 0 0
2.205105178J x 10188 2.205083423) x 10188

13  -2.205105178J x 10188 -2.205083423J x 10188

14 4.126696590 x 10385 4.126122615 x 103 8 5

F5  3.842092989 x 1080 1.481363914 x 1080
Re F 6  1.474033508 x 10 - 9 3  5.68546845 x 10-94

1. F6 -5.52484518 x 1079 -4.40151006 x 1079
F8  3.84202989 x 100 1.451363914 x 1080

5 4.139482976 x 10162 4.139482976 x 10162

a" 16 3.183059180 x 10-9  3.183039180 x 10-

% 4.139482976 1 10162 4.13942976 x 10162

Fi Il 4.576576513 x 10-15 2.550875189 x 10-15

F2 h -1. 12627650 x 10-18 -4.919007606 x 101
F3 13 -1.801870520 x 10-19 -7. 69871931 x 10- 20
F4 14 1.00262034 x 10-19 4.378993579 x 10-20
F5 15 1.59042785 x OP4 6.132080703 x104

.FS18 2.31499W x 102 1. 825160563 x10; 4 2

F8 I 1. 590427852 6.1300703 x 10242

• I 3. 6438555 x 10243 1.591448251 x 10243
Coeff 1 4.169401884 x 10-310 5.374372065 x 10-310
Coeff 2 8. 776518558 x 10- "  6.36885430x 10 - 3 4 4

COefo2 r 2

8

-1
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CASE I

10

Sx=.5

99

10299 x CIZ er
8 m a

x=.
7

6.

5.

4.

3

2.

1

0o
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5
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CASE II

Summary of Values for ak a 102, p? a 6.000025

__- _ 6 10 2  
Values of_____"_

x .7 .5 r/a For x a.7 For x- .5

y .9998905959 .9999384817 0 1.8096432 x 102 5.2136187 x 10
f 3.500280060 2. 500160139 .1 1.7835734 x 102 5. 1385115 x 10
q 2.404840387 x 103 2.404835008 x 103 .2 1. 7064903 x 102 4.9154345 x 10
p 2.236080556 x 105 2.236079069 x 105  .3 1.5817168 x 102 4.5569609 x 10M 5.000447026 x 1010 5.000480279 x 1010 .4 1.4146147 x 102 4.0755384 x 10
8 -1. 87552 x 106  -1. 47648 x 106 .5 1.2123270 x 102 3.4927458 x 10
c1 4.638354547 x 10- 97  4.639144141 x 10-9 7  .6 9. 8343796 x 10 2.8333140 x 10
2 3.646241238 x 10-6 3.532368146 x 10-7  .7 7. 3756387 x 10 z. 1240478 x 10

C, -2. 332968653 - .9998769634 .8 4.8489892 x 10 1.3970166 x 10-2. 788561642 -1.414126562 .9 2. 3573572 x 10 6.7917354
R -1. 201246835 x 102 3  -1. 516656482 x 1023 1.0 3.0356136 x 10-4  8. 4724674 x 10-6T - 5 . 5 56824512 x 1018 -5. 011324661 x 1018 1.1 2. 5978231 x 10-4  7 . 2 505840 x 10-6
R' -2. 611720668 x 1020 -1. 990641619 x 1020 1.2 2.2038224 x 10-4  6. 1509190 x 10-6
T, 3.020818349 x 1016 2.302445054 x 1016 1.3 1.8470813 x 10-4 5.1552463 x 10-6
f 3 -3.676783183 x 10-8  -2.446310694 x 10-8 1.4 1.5209538 x 10-4 4.2450169 x 10-6
L -9.287120418 x 10-56  -4.413530397 x 10-55 1.5 1.2Z211892 x 10-4 3.4063672 x 10-6

F 1  1.421535942 x 10-7  7.993544921 x 10-8 1.6 9.4365438 x 10-5  2.6337610 x 10-6Fz  2.299760241J x 10-106 1.018226137J x 10-106 1.7 6.8530496 x 10-5  1.9127019 x 10-6
F3  -3. 832039965J x 10- 107  -1. 696764786J x 10-107 1.8 4.4333925 x 10-5 1.2373700 x 10-6
F4  1. 147162520 x 10-204 5.079880743 x 10- 0  1.9 2. 1556305 x 10-5  6.0164144 x 10-7
11 1.347570470 x 10-7  1.347570466 x 10-7 2.0 0 0
12 8.015023185J x 1086 8. 013856901J x 1086
13 - 8.0 15 02 3 185J x 1086 -8.013856901J x 1o86
14 2.653635970 x 10182 2.652850350 x 10182
F5  5.800314707 x 10- 8 1. 06320303L x 10- .91 2. 1139941 x 10 6.0906023ROF 1.74938139 x 10-8 4.853114861 x 0-9 .92 1.8720750 x 10 5.3936289

8  1.728z 283 x 10-8 -6.74858216 x 10- .93 1.6316944 x 10 4.7010883
8 4.918169934 x 10-8 7. 372337806 x 10-9  .94 1. 3929462 x 10 4.013250515 2. 787895257 x 10-7  2. 787895257 x 10-7  .95 1. 1559233 x 10 3.3303830

Rel6  3.605254500 x 10-7  3.60554500 x 10-7  .95 9.2071729 2.6527501
i 8.762842367 x 10-7 8.762842367 x 10-7  .97 6.8741914 1.9806136

1. 915619857 x 10-14 1.077186505 x 10-14 .98 4.5611931 1.3142336
F2 2 -1. 8263165 x 10-19 -8. 159918555 x 10-20 .99 2. 2691461 .65386399F313 -3.071388917 x 10-20 -1.359763019 x 10-20  .99! 1.1314051 .32608387
F414  3.044151727 x 10-22 1.347616341 x 10-22 .99! 4.5160701 x 10-1 .13021180
F515  1.617066986 x 10-14 2.96409869 x 10-15 .995 2.2552059 x 10-1 6. 5065232 x 10-2
%.F6 16 1.616879755 x 10-15 3.631098763 x 10-15
Fe18 4.300714787 x 10-14 6. 46023407 x 10-15

E.Ix 8.165756107 x 10-14 2.745832962 x 10-14
Coeff1  3. 618962810 x 10-9  1.042623596 x 10-9

Coeff2  4.20086659 x 10-4 1.172460375 x 10-

Coff, w = 20 C

2w oc 0 1.

22AZ
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CASE 11

18&
CIEI_

m a

160-

x=. 7

140.

120-

1o.

80-

60 / x=.5

40-

20-

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 0
r/a
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CASE Mf1

ka= 7xlO3 , 02 - 6.005102041

In 5x102  Values of

.7 .5 rJ, For x w .7 Fonr -5

y .9779975594 .9876519579 0 7. 125499252 8.421984918

f 3.555976389 2.532007921 .1 7. 022644030 8.300472142
2. 407251260 x 103  2.406684664 x 103 .2 6. 718529845 7.941190526

P 1.566993507 x 104  1. 566800030 x 104  .3 6.226294257 7.359653509
M 2. 494896933 x 108 2.498167021 x 108 .4 5.567130934 6.580887224

S -1.8520304 x 106 -1. 4616625 x 106 .5 4. 769275220 5.638235455

1 2.343388642 x 10- 7  2.353220927 x 10- 7  .6 3.866659658 4. 571767509

22 2. 793267998 x 10- 4  1.570659319 x 10-4 .7 2. 897321346 3.42639441
er -2. 259991865 -. 9753039158 .8 1.901712998 2.240848394
' -2. 727504880 -1.396750794 .9 9.213164880 x 10-1 1.090918066

R -2.045747178 x 1017 -2.600475240 x 1017 1.0 9.224264276 x 10-4 6.120993715 x 10- 4

T -1. 873920396 x 1015 -1. 703190155 x 10- 5  1.1 7. 893958174 x 10. 4  5.238235476 x 10- 4

R' -4.326419710 x 1014 -3.326038291 x 1014 1.2 6.696715401 x 10- 4  4. 443774772 x 10- 4

T' 1.021026696 x 1013 7.847629400 x 1012  1.3 5.612692559 x 10-4 3.724444016 x 10- 4

C3 -6.973370110 x 10-6 -4.646927041 x 10-6 1.4 4.621694767 x 10 4  3.066842382 x 10-4

L -2. 340389651 x 10-4 5  -1. 090450853 x 10- 4 4  1.5 3.710805671 x 104 2.4623968898 x 10-4

F1  2. 794648081 x 10- 5  1.575790576 x 10- 5  1.6 2.867454683 x 104 1.902779187 x 10 4

F2  3. 235412563i x 10"1 3  1.44444912J x 1013 1.7 2. 082423802 x 10-4 1.381844950 x 10-4

F 3  -5. 153970917J x 10-14 -2. 323110925J x 10- 14 1.8 1.347166981 x 10-4 8.939467016 x 10- 5

F4  1.153484515 x 10-20 5.155845188 x 10- 21 1.9 6.550275578 x 10- 5  4.346600927 x 10- 5

1. 347567668 x 10-7 1.347568769 x I0-7 2.0 0 0

2. 099601048J x 10-2 2. 096263246J x 10 - 2

15 -2. 099601048j x 10-2 -2. 096263246J x 10-2
14 1.256431006 x 104 1.251876324 x 104

F5  5.104127906 x 10-6 2. 138824275 x 10-6

RoF6  2. 109232969 x 10. 6  9.107530442 x 10- 7

in 6 -1. 856345443 x 10-6 -9.465968673 x 10-7
re 3.768417259 x 10- 6  1.551161837 x 10- 6

15 2.787895257 x 10-7  2.787895257 x 10-7

R6 3. 6052450 x 10- 7  3.60525450 x 10- 7

8.762842367 x 10- 7  8.762842367

F1It 3.765977397 x 10-1 2. 123488167 x 10- 12

F2 12  -6. 793075606 x 10-15 -3.027934684 x 10-15

F 3 13  -1. 082128274 x 10-15 -4. 89652048 x 10-16
F4 14 1.449286274 x 10-16 6.454480521 x 10- 17

F515 1.422977396 x 10-12 5.962818052 x 10-13

ReF 6 16  1. 277961831 x 10-12  5. 922509428 x 10-13

F8 3.302204641 x 10 "12 1.359258666 x 10-12

F014 1.103935282 x 10-11 5. 26008149 x 10-1
Coeff1  2. 856029500 x 10-8 3.371265747 x 10-
Caf?2  1. 276497612 x 10 "3  8.470522556 x 10- 4

Co4ff
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